Esempio n. 1
0
 public Node initRoot(List<Record> data) {
   Node root = DecisionTree.INSTANCE.getRoot();
   SampleDistribute sampleDis = root.getSampleDistribute();
   for (Record record : data) {
     sampleDis.acceptOneRecord(record);
   }
   root.calculteEntropy();
   root.setPotentialClassifierAttrs(new HashSet<>(Data.INSTANCE.getDeterminingAttributes()));
   return root;
 }
Esempio n. 2
0
 private double calcEntropy(Node parent, Collection<Node> children) {
   int total = parent.getTotal();
   return children
       .stream()
       .map(e -> ((double) e.getTotal() / (double) total) * e.getEntropy())
       .reduce(0.0, (x, y) -> x + y);
 }
Esempio n. 3
0
  private Collection<DecisionTree.Node> getChildrenForBestClassifierAttribute(Node node) {
    Collection<DecisionTree.Node> result = null;
    Set<String> sets = new HashSet<>(node.getPotentialClassifierAttrs());
    if (sets.isEmpty()) return null;
    String selectedAttri = "";
    double min = Double.MAX_VALUE;
    for (String attribute : sets) {
      Collection<DecisionTree.Node> children = generateChildren(node, attribute);
      double entropy = calcEntropy(node, children);
      if (entropy < min) {
        min = entropy;
        selectedAttri = attribute;
        result = children;
      }
    }
    node.setBestClassifierAttribute(selectedAttri);

    return result;
  }
Esempio n. 4
0
  public Collection<Node> generateChildren(Node node, String attribute) {

    Collection<Node> children = node.generateChildren(attribute);
    node.setChildren(new ArrayList<Node>(children));
    return children;
  }