private static String readFile(String fName) { StringBuffer sb = new StringBuffer(); try { // Scanner sc = new Scanner(new File(fName)); Scanner sc = new Scanner(CLAZZ.getResourceAsStream(fName)); while (sc.hasNext()) sb.append(sc.nextLine()); sc.close(); } catch (Exception e) { Logger.logError(CLAZZ, "Could not read file: " + fName); e.printStackTrace(); } return sb.toString(); }
private static void initCL(CLDevice.Type clType) throws Exception { /** * Hole OpenCL-Plattformen z.B. AMD APP, NVIDIA CUDA ** */ platforms = JavaCL.listPlatforms(); /** * Hole OpenCL-Device des geforderten Typs z.B. GPU, CPU ** */ EnumSet<CLDevice.Type> types = EnumSet.of(clType); devices = new ArrayList<CLDevice>(); CLDevice[] devTmp; for (CLPlatform platform : platforms) { devTmp = platform.listDevices(types, true); devices.addAll(Arrays.asList(devTmp)); } /** * Erstelle OpenCL-Context und CommandQueue ** */ devTmp = new CLDevice[devices.size()]; context = JavaCL.createContext(null, devices.toArray(devTmp)); cmdQ = context.createDefaultQueue(QueueProperties.ProfilingEnable); /** * OpenCL-Quellcode einlesen ** */ String src = readFile(KERNEL_PATH); // String src = KERNEL_SRC; /** * OpenCL-Programm aus Quellcode erstellen ** */ program = context.createProgram(src); try { program.build(); } catch (CLBuildException err) { Logger.logError(CLAZZ, "Build log for \"" + devices.get(0) + "\n" + err.getMessage()); throw err; } /** * OpenCL-Kernel laden ** */ kernel = program.createKernel("addVec"); }
public static synchronized boolean addVec( CLDevice.Type clType, int[] vecC, int[] vecA, int[] vecB) { try { if ((Logger.getLogMask() & Level.DEFAULT.DEBUG.getLevel().getValue()) == Level.DEFAULT.DEBUG.getLevel().getValue()) { Logger.logDebug(CLAZZ, "addVec() vecA: " + Convert.toString(vecA)); Logger.logDebug(CLAZZ, "addVec() vecB: " + Convert.toString(vecB)); } /** * Initialisiere OpenCL-Objekte ** */ initCL(clType); /** * Ausgabe von Informationen ueber gewaehltes OpenCL-Device ** */ Logger.logInfo(CLAZZ, "max compute units: " + devices.get(0).getMaxComputeUnits()); Logger.logInfo(CLAZZ, "max work group sizes: " + devices.get(0).getMaxWorkGroupSize()); Logger.logInfo( CLAZZ, "max global mem size (KB): " + devices.get(0).getGlobalMemSize() / 1024); Logger.logInfo(CLAZZ, "max local mem size (KB): " + devices.get(0).getLocalMemSize() / 1024); /** * Erstellen und Vorbereiten der Daten ** */ IntBuffer tmpBuffer = ByteBuffer.allocateDirect(vecA.length * Integer.SIZE) .order(context.getByteOrder()) .asIntBuffer(); tmpBuffer.put(vecA); CLBuffer<IntBuffer> aBuffer = context.createBuffer(CLMem.Usage.Input, tmpBuffer, true); tmpBuffer.clear(); tmpBuffer.put(vecB); CLBuffer<IntBuffer> bBuffer = context.createBuffer(CLMem.Usage.Input, tmpBuffer, true); CLBuffer<IntBuffer> cBuffer = context.createBuffer(CLMem.Usage.Output, vecC.length, IntBuffer.class); /** * Kernel-Argumente setzen ** */ kernel.setArg(0, cBuffer); kernel.setArg(1, aBuffer); kernel.setArg(2, bBuffer); kernel.setArg(3, vecC.length); /** * Kernel ausfuehren und auf Abarbeitung warten ** */ CLEvent event = kernel.enqueueNDRange(cmdQ, new int[] {vecC.length}, new CLEvent[0]); event.waitFor(); cmdQ.finish(); /** * Daten vom OpenCL-Device holen ** */ cBuffer.read(cmdQ, tmpBuffer, true, new CLEvent[0]); tmpBuffer.clear(); tmpBuffer.get(vecC); if ((Logger.getLogMask() & Level.DEFAULT.DEBUG.getLevel().getValue()) == Level.DEFAULT.DEBUG.getLevel().getValue()) { Logger.logDebug(CLAZZ, "addVec() vecC: " + Convert.toString(vecC)); } } catch (CLException err) { Logger.logError(CLAZZ, "OpenCL error:\n" + err.getMessage() + "():" + err.getCode()); err.printStackTrace(); return EXIT_FAILURE; } catch (Exception err) { Logger.logError(CLAZZ, "Error:\n" + err.getMessage() + "()"); err.printStackTrace(); return EXIT_FAILURE; } return EXIT_SUCCESS; }