@Test public final void testAcyclic() { bounds.bound(ac1, factory.area(factory.tuple("0", "0"), factory.tuple("4", "4"))); assertNotNull(solve(ac1.some().and(ac1.acyclic()))); assertPrimVarNum(10); bounds.bound(r1, factory.range(factory.tuple("0"), factory.tuple("4"))); assertNotNull(solve(ac1.join(r1).some().and(ac1.acyclic()))); assertPrimVarNum(10 + bounds.upperBound(r1).size()); TupleSet ac2b = factory.setOf("5", "6", "7", "8"); ac2b = ac2b.product(ac2b); bounds.bound(ac2, ac2b); assertNotNull(solve(ac1.difference(ac2).some().and(ac1.acyclic()).and(ac2.acyclic()))); assertPrimVarNum(10 + 6); bounds.boundExactly(r2, factory.setOf(factory.tuple("5", "6"))); assertNotNull(solve(ac2.join(r2).some().and(ac2.acyclic()))); final TupleSet ac3Bound = factory.allOf(2); ac3Bound.remove(factory.tuple("9", "9")); bounds.bound(ac3, ac3Bound); assertNotNull( solve(ac1.difference(ac2).union(ac3).some().and(ac1.acyclic()).and(ac2.acyclic()))); assertPrimVarNum(ac3Bound.size() + 10 + 6); bounds.bound(to3, factory.allOf(2)); bounds.bound(ord3, factory.setOf("0", "1", "2")); bounds.bound(first3, bounds.upperBound(ord3)); bounds.bound(last3, bounds.upperBound(ord3)); assertNotNull( solve(to3.product(ac1).some().and(ac1.acyclic()).and(to3.totalOrder(ord3, first3, last3)))); assertPrimVarNum(bounds.upperBound(ac1).size()); }
/** * Computes the lowerbound from bottom-up; it will also set a suitable initial value for each * sig's upperbound. Precondition: sig is not a builtin sig */ private TupleSet computeLowerBound(List<Tuple> atoms, final PrimSig sig) throws Err { int n = sc.sig2scope(sig); TupleSet lower = factory.noneOf(1); for (PrimSig c : sig.children()) lower.addAll(computeLowerBound(atoms, c)); TupleSet upper = lower.clone(); boolean isExact = sc.isExact(sig); if (isExact || sig.isTopLevel()) for (n = n - upper.size(); n > 0; n--) { Tuple atom = atoms.remove(atoms.size() - 1); // If MUST<SCOPE and s is exact, then add fresh atoms to both LOWERBOUND and UPPERBOUND. // If MUST<SCOPE and s is inexact but toplevel, then add fresh atoms to the UPPERBOUND. if (isExact) lower.add(atom); upper.add(atom); } lb.put(sig, lower); ub.put(sig, upper); return lower; }
/** * Computes the bounds for sigs/fields, then construct a BoundsComputer object that you can query. */ private BoundsComputer(A4Reporter rep, A4Solution sol, ScopeComputer sc, Iterable<Sig> sigs) throws Err { this.sc = sc; this.factory = sol.getFactory(); this.rep = rep; this.sol = sol; // Figure out the sig bounds final Universe universe = factory.universe(); final int atomN = universe.size(); final List<Tuple> atoms = new ArrayList<Tuple>(atomN); for (int i = atomN - 1; i >= 0; i--) atoms.add(factory.tuple(universe.atom(i))); for (Sig s : sigs) if (!s.builtin && s.isTopLevel()) computeLowerBound(atoms, (PrimSig) s); for (Sig s : sigs) if (!s.builtin && s.isTopLevel()) computeUpperBound((PrimSig) s); // Bound the sigs for (Sig s : sigs) if (!s.builtin && s.isTopLevel()) allocatePrimSig((PrimSig) s); for (Sig s : sigs) if (s instanceof SubsetSig) allocateSubsetSig((SubsetSig) s); // Bound the fields again: for (Sig s : sigs) { while (s.isOne != null && s.getFieldDecls().size() == 2 && s.getFields().size() == 2 && s.getFacts().size() == 1) { // Let's check whether this is a total ordering on an enum... Expr fact = s.getFacts().get(0).deNOP(), b1 = s.getFieldDecls().get(0).expr.deNOP(), b2 = s.getFieldDecls().get(1).expr.deNOP(), b3; if (!(fact instanceof ExprList) || !(b1 instanceof ExprUnary) || !(b2 instanceof ExprBinary)) break; ExprList list = (ExprList) fact; if (list.op != ExprList.Op.TOTALORDER || list.args.size() != 3) break; if (((ExprUnary) b1).op != ExprUnary.Op.SETOF) break; else b1 = ((ExprUnary) b1).sub.deNOP(); if (((ExprBinary) b2).op != ExprBinary.Op.ARROW) break; else { b3 = ((ExprBinary) b2).right.deNOP(); b2 = ((ExprBinary) b2).left.deNOP(); } if (!(b1 instanceof PrimSig) || b1 != b2 || b1 != b3) break; PrimSig sub = (PrimSig) b1; Field f1 = s.getFields().get(0), f2 = s.getFields().get(1); if (sub.isEnum == null || !list.args.get(0).isSame(sub) || !list.args.get(1).isSame(s.join(f1)) || !list.args.get(2).isSame(s.join(f2))) break; // Now, we've confirmed it is a total ordering on an enum. Let's pre-bind the relations TupleSet me = sol.query(true, sol.a2k(s), false), firstTS = factory.noneOf(2), lastTS = null, nextTS = factory.noneOf(3); if (me.size() != 1 || me.arity() != 1) break; int n = sub.children().size(); for (PrimSig c : sub.children()) { TupleSet TS = sol.query(true, sol.a2k(c), false); if (TS.size() != 1 || TS.arity() != 1) { firstTS = factory.noneOf(2); nextTS = factory.noneOf(3); break; } if (lastTS == null) { firstTS = me.product(TS); lastTS = TS; continue; } nextTS.addAll(me.product(lastTS).product(TS)); lastTS = TS; } if (firstTS.size() != (n > 0 ? 1 : 0) || nextTS.size() != n - 1) break; sol.addField(f1, sol.addRel(s.label + "." + f1.label, firstTS, firstTS)); sol.addField(f2, sol.addRel(s.label + "." + f2.label, nextTS, nextTS)); rep.bound("Field " + s.label + "." + f1.label + " == " + firstTS + "\n"); rep.bound("Field " + s.label + "." + f2.label + " == " + nextTS + "\n"); continue again; } for (Field f : s.getFields()) { boolean isOne = s.isOne != null; if (isOne && f.decl().expr.mult() == ExprUnary.Op.EXACTLYOF) { Expression sim = sim(f.decl().expr); if (sim != null) { rep.bound("Field " + s.label + "." + f.label + " defined to be " + sim + "\n"); sol.addField(f, sol.a2k(s).product(sim)); continue; } } Type t = isOne ? Sig.UNIV.type().join(f.type()) : f.type(); TupleSet ub = factory.noneOf(t.arity()); for (List<PrimSig> p : t.fold()) { TupleSet upper = null; for (PrimSig b : p) { TupleSet tmp = sol.query(true, sol.a2k(b), false); if (upper == null) upper = tmp; else upper = upper.product(tmp); } ub.addAll(upper); } Relation r = sol.addRel(s.label + "." + f.label, null, ub); sol.addField(f, isOne ? sol.a2k(s).product(r) : r); } } // Add any additional SIZE constraints for (Sig s : sigs) if (!s.builtin) { Expression exp = sol.a2k(s); TupleSet upper = sol.query(true, exp, false), lower = sol.query(false, exp, false); final int n = sc.sig2scope(s); if (s.isOne != null && (lower.size() != 1 || upper.size() != 1)) { rep.bound("Sig " + s + " in " + upper + " with size==1\n"); sol.addFormula(exp.one(), s.isOne); continue; } if (s.isSome != null && lower.size() < 1) sol.addFormula(exp.some(), s.isSome); if (s.isLone != null && upper.size() > 1) sol.addFormula(exp.lone(), s.isLone); if (n < 0) continue; // This means no scope was specified if (lower.size() == n && upper.size() == n && sc.isExact(s)) { rep.bound("Sig " + s + " == " + upper + "\n"); } else if (sc.isExact(s)) { rep.bound("Sig " + s + " in " + upper + " with size==" + n + "\n"); sol.addFormula(size(s, n, true), Pos.UNKNOWN); } else if (upper.size() <= n) { rep.bound("Sig " + s + " in " + upper + "\n"); } else { rep.bound("Sig " + s + " in " + upper + " with size<=" + n + "\n"); sol.addFormula(size(s, n, false), Pos.UNKNOWN); } } }