/** Creates the total selector's set for get all the possible rules */ private Complejo hazSelectores(Dataset train) { Complejo almacenSelectores; int nClases = train.getnclases(); almacenSelectores = new Complejo(nClases); // Aqui voy a almacenar los selectores (numVariable,operador,valor) Attribute[] atributos = null; int num_atributos, type; Vector nominalValues; atributos = Attributes.getAttributes(); num_atributos = Attributes.getNumAttributes(); Selector s; for (int i = 0; i < train.getnentradas(); i++) { type = atributos[i].getType(); switch (type) { case 0: // NOMINAL nominalValues = atributos[i].getNominalValuesList(); // System.out.print("{"); for (int j = 0; j < nominalValues.size(); j++) { // System.out.print ((String)nominalValues.elementAt(j)+" "); s = new Selector(i, 0, (String) nominalValues.elementAt(j), true); // [atr,op,valor] // incluimos tb los valores en double para facilitar algunas funciones s.setValor((double) j); almacenSelectores.addSelector(s); // s.print(); } // System.out.println("}"); break; } // System.out.println(num_atributos); } return almacenSelectores; }
/** * It reads the whole input data-set and it stores each example and its associated output value in * local arrays to ease their use. * * @param datasetFile String name of the file containing the dataset * @param train boolean It must have the value "true" if we are reading the training data-set * @throws IOException If there ocurs any problem with the reading of the data-set */ public void readClassificationSet(String datasetFile, boolean train) throws IOException { try { // Load in memory a dataset that contains a classification problem IS.readSet(datasetFile, train); nData = IS.getNumInstances(); nInputs = Attributes.getInputNumAttributes(); nVars = nInputs + Attributes.getOutputNumAttributes(); // outputIntegerheck that there is only one output variable if (Attributes.getOutputNumAttributes() > 1) { System.out.println("This algorithm can not process MIMO datasets"); System.out.println("All outputs but the first one will be removed"); System.exit(1); } boolean noOutputs = false; if (Attributes.getOutputNumAttributes() < 1) { System.out.println("This algorithm can not process datasets without outputs"); System.out.println("Zero-valued output generated"); noOutputs = true; System.exit(1); } // Initialice and fill our own tables X = new double[nData][nInputs]; Nominal = new String[nData][nVars]; missing = new boolean[nData][nVars]; outputInteger = new int[nData]; outputReal = new double[nData]; output = new String[nData]; // Maximum and minimum of inputs emax = new double[nInputs]; emin = new double[nInputs]; for (int i = 0; i < nInputs; i++) { emax[i] = Attributes.getAttribute(i).getMaxAttribute(); emin[i] = Attributes.getAttribute(i).getMinAttribute(); } // All values are casted into double/integer nClasses = 0; for (int i = 0; i < nData; i++) { Instance inst = IS.getInstance(i); for (int j = 0; j < nInputs; j++) { X[i][j] = IS.getInputNumericValue(i, j); // inst.getInputRealValues(j); Nominal[i][j] = "" + IS.getInputNumericValue(i, j); missing[i][j] = inst.getInputMissingValues(j); if (missing[i][j]) { X[i][j] = emin[j] - 1; } } if (noOutputs) { outputInteger[i] = 0; output[i] = ""; } else { outputInteger[i] = (int) IS.getOutputNumericValue(i, 0); output[i] = IS.getOutputNominalValue(i, 0); Nominal[i][nInputs] = output[i]; missing[i][nInputs] = false; } if (outputInteger[i] > nClasses) { nClasses = outputInteger[i]; } } nClasses++; System.out.println("Number of classes=" + nClasses); } catch (Exception e) { System.out.println("DBG: Exception in readSet"); e.printStackTrace(); } computeStatistics(); this.computeInstancesPerClass(); Attribute[] atts = Attributes.getAttributes(); for (indexClass = 0; (indexClass < atts.length) && (!(Attributes.getOutputAttribute(0) .getName() .equalsIgnoreCase(atts[indexClass].getName()))); indexClass++) {; } }