public void postGeneration() { // Create the solutionSet union of solutionSet and offSpring union_ = ((SolutionSet) population_).union(offspringPopulation_); // Ranking the union Ranking ranking = new Ranking(union_); if (ranking.getNumberOfSubfronts() == 0) System.out.println("No hay subfrentes!!"); int remain = populationSize_; int index = 0; SolutionSet front = null; population_.clear(); // Obtain the next front front = ranking.getSubfront(index); while ((remain > 0) && (remain >= front.size())) { // Assign crowding distance to individuals distance_.crowdingDistanceAssignment(front, problem_.getNumberOfObjectives()); // Add the individuals of this front for (int k = 0; k < front.size(); k++) { population_.add(front.get(k)); } // for // Decrement remain remain = remain - front.size(); // Obtain the next front index++; if (remain > 0) { front = ranking.getSubfront(index); } // if } // while // Remain is less than front(index).size, insert only the best one if (remain > 0) { // front contains individuals to insert distance_.crowdingDistanceAssignment(front, problem_.getNumberOfObjectives()); front.sort(new jmetal.coevolutionary.base.operator.comparator.CrowdingComparator()); for (int k = 0; k < remain; k++) { population_.add(front.get(k)); } // for remain = 0; } // if // This piece of code shows how to use the indicator object into the code // of NSGA-II. In particular, it finds the number of evaluations required // by the algorithm to obtain a Pareto front with a hypervolume higher // than the hypervolume of the true Pareto front. if ((indicators_ != null) && (requiredEvaluations_ == 0)) { double HV = indicators_.getHypervolume(population_); if (HV >= (0.98 * indicators_.getTrueParetoFrontHypervolume())) { requiredEvaluations_ = evaluations_; } // if } // if prepareBestSolutions(); } // postGeneration
public void setup(int islandId) throws JMException { islandID_ = islandId; distance_ = new Distance(); // Read the parameters indicators_ = (QualityIndicator) this.getInputParameter("indicators"); islands_ = ((Integer) getInputParameter("numberOfIslands")).intValue(); populationSize_ = ((Integer) getInputParameter("populationSize")).intValue(); maxEvaluations_ = ((Integer) getInputParameter("maxEvaluations")).intValue(); numberOfSolutions_ = ((Integer) getInputParameter("numberOfSolutions")).intValue(); bestSolutionsFirstLevel_ = ((Integer) getInputParameter("bestSolutionsFirstLevel")).intValue(); specialSolution_ = ((String) getInputParameter("specialSolution")); mergeSolution_ = ((Integer) this.getInputParameter("mergeSolution")).intValue(); // Initialize the variables population_ = new SolutionSet(islandId, islands_, numberOfSolutions_, populationSize_, mergeSolution_); evaluations_ = 0; // bestSolutions = new Solution[islands-1]; requiredEvaluations_ = 0; // Read the operators mutationOperator_ = operators_.get("mutation"); crossoverOperator_ = operators_.get("crossover"); selectionOperator_ = operators_.get("selection"); localSearchOperator_ = operators_.get("localsearch"); // NOTEIT Creation of the SolutionSet of the Islands // Create the initial solutionSet Solution newSolution = null; // for( int i=0 ; i<populationSize_ ; ++i) { // newSolution = new Solution( problem_ ); // population_.add( newSolution ); // } // for int minminInit = PseudoRandom.randInt(0, populationSize_ - 1); // To initialize one individual with min-min for (int i = 0; i < populationSize_; i++) { if (specialSolution_ == null) { newSolution = new Solution(problem_); } // if else if (specialSolution_.contains("OneMinmin")) { if (minminInit == i) { // int [] vars = ScheduleStrategy.minMin(ETC_, numberOfTasks, numberOfMachines) DecisionVariables specialDV = problem_.generateSpecial(specialSolution_, islandId); newSolution = new Solution(problem_, specialDV); } else newSolution = new Solution(problem_); } else if (specialSolution_.equalsIgnoreCase("Min-Min")) { DecisionVariables specialDV = problem_.generateSpecial(specialSolution_, islandId); newSolution = new Solution(problem_, specialDV); } // else // problem_.evaluate( newSolution ); // problem_.evaluateConstraints( newSolution ); population_.add(newSolution); newSolution.setLocation(i); // evaluations++; } // for prepareSetupBestSolutions(); } // setup
public void generation() throws JMException { // if ( ( (evaluations_%4000) == 0 ) && (population_.getLoadingPosition()==0) ){ // String file = "FUN." + ((int) evaluations_/4000 ); // population_.printObjectivesToFile( file ); // } // if // Create the offSpring solutionSet int loadingPosition = population_.getLoadingPosition(); // System.out.println("Isla: " + loadingPosition + "Numero de islas: " + islands_ + "Numero de // variables: " + problem_.getNumberOfVariables()); offspringPopulation_ = new SolutionSet( loadingPosition, islands_, numberOfSolutions_, populationSize_, mergeSolution_); // Link the external dv's offspringPopulation_.setBestExternResults(population_); Solution[] parents = new Solution[2]; for (int i = 0; i < (populationSize_ / 2); i++) { // obtain parents Object obj = selectionOperator_.execute(population_, loadingPosition); if (obj.getClass() .getCanonicalName() .toString() .equalsIgnoreCase(Solution.class.getCanonicalName().toString())) { parents[0] = (Solution) obj; parents[1] = (Solution) selectionOperator_.execute(population_, loadingPosition); } // if else { parents = (Solution[]) obj; } // else if (evaluations_ < maxEvaluations_) { Solution[] offSpring = (Solution[]) crossoverOperator_.execute(parents, loadingPosition); offSpring[0].unLink(); offSpring[1].unLink(); mutationOperator_.execute(offSpring[0], loadingPosition); mutationOperator_.execute(offSpring[1], loadingPosition); if (localSearchOperator_ != null) { localSearchOperator_.execute(offSpring[0], loadingPosition); // evaluations_ += localSearchOperator_.getEvaluations(); localSearchOperator_.execute(offSpring[1], loadingPosition); // evaluations_ += localSearchOperator_.getEvaluations(); } // if population_.linkExternalDecisionVariables(offSpring[0]); population_.linkExternalDecisionVariables(offSpring[1]); problem_.evaluate(offSpring[0], loadingPosition); problem_.evaluateConstraints(offSpring[0]); problem_.evaluate(offSpring[1], loadingPosition); problem_.evaluateConstraints(offSpring[1]); offspringPopulation_.add(offSpring[0]); offspringPopulation_.add(offSpring[1]); evaluations_ += 2; } // if else { offspringPopulation_.add(new Solution(parents[0])); offspringPopulation_.add(new Solution(parents[1])); } // else } // for } // generation