/** * Configure the MOCell algorithm with default parameter settings * * @return an algorithm object * @throws jmetal.util.JMException */ public Algorithm configure() throws JMException { Algorithm algorithm; Operator selection = null; // Selection operator Operator crossover = null; // Crossover operator Operator mutation = null; // Mutation operator Operator localsearch = null; // LocalSearch operator QualityIndicator indicators; // Creating the problem: there are six MOCell variants // algorithm = new sMOCell1(problem_) ; // algorithm = new sMOCell2(problem_) ; // algorithm = new aMOCell1(problem_) ; // algorithm = new aMOCell2(problem_) ; // algorithm = new aMOCell3(problem_) ; // algorithm = new aMOCell4CTBT(problem_) ; algorithm = new aMOCell4(problem_); // algorithm = new aMOCell2CTBT(problem_) ; // Algorithm parameters algorithm.setInputParameter("populationSize", populationSize_); algorithm.setInputParameter("maxEvaluations", maxEvaluations_); algorithm.setInputParameter("archiveSize", archiveSize_); algorithm.setInputParameter("feedBack", feedback_); // algorithm.setInputParameter( "specialSolution" , P_SPECIAL_SOLUTION ); // Mutation and Crossover for Real codification crossover = CrossoverFactory.getCrossoverOperator(CROSSOVER); // crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover"); crossover.setParameter("probability", crossoverProbability_); crossover.setParameter("distributionIndex", distributionIndexForCrossover_); mutation = MutationFactory.getMutationOperator(MUTATION); // mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", mutationProbability_); // mutation.setParameter( "rounds" , (Integer) M_ROUNDS ); mutation.setParameter("Problem", problem_); // mutation.setParameter( "overloadPercentage" , M_OVERLOAD_PER ); // mutation.setParameter( "Policy" , M_POLICY ); // mutation.setParameter( "Mode" , M_MODE ); selection = SelectionFactory.getSelectionOperator(SELECTION); localsearch = LocalSearchFactory.getLocalSearchOperator(LOCAL_SEARCH); localsearch.setParameter("Problem", problem_); // Add the operators to the algorithm algorithm.addOperator("localsearch", localsearch); algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); // // Creating the indicator object // if (! paretoFrontFile_.equals("")) { // indicators = new QualityIndicator(problem_, paretoFrontFile_); // algorithm.setInputParameter("indicators", indicators) ; // } // if return algorithm; }
public static void main(String[] args) throws JMException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator // int bits ; // Length of bit string in the OneMax problem // bits = 512 ; // problem = new OneMax(bits); problem = new Sphere("Real", 20); // problem = new Easom("Real") ; // problem = new Griewank("Real", 10) ; algorithm = new DE(problem); // Asynchronous cGA /* Algorithm parameters*/ algorithm.setInputParameter("populationSize", 100); algorithm.setInputParameter("maxEvaluations", 1000000); // Crossover operator crossover = CrossoverFactory.getCrossoverOperator("DifferentialEvolutionCrossover"); crossover.setParameter("CR", 0.1); crossover.setParameter("F", 0.5); crossover.setParameter("DE_VARIANT", "rand/1/bin"); // Add the operators to the algorithm selection = SelectionFactory.getSelectionOperator("DifferentialEvolutionSelection"); algorithm.addOperator("crossover", crossover); algorithm.addOperator("selection", selection); /* Execute the Algorithm */ long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; System.out.println("Total execution time: " + estimatedTime); /* Log messages */ System.out.println("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); System.out.println("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); } // main
/** * Configure the MOCell algorithm with default parameter settings * * @return an algorithm object * @throws jmetal.util.JMException */ public Algorithm configure() throws JMException { Algorithm algorithm; Operator selection; Operator crossover; Operator mutation; QualityIndicator indicators; // Creating the problem: there are six MOCell variants // algorithm = new sMOCell1(problem_) ; // algorithm = new sMOCell2(problem_) ; // algorithm = new aMOCell1(problem_) ; // algorithm = new aMOCell2(problem_) ; // algorithm = new aMOCell3(problem_) ; algorithm = new sMOCell4CTBT(problem_); // Algorithm parameters algorithm.setInputParameter("populationSize", populationSize_); algorithm.setInputParameter("maxEvaluations", maxEvaluations_); algorithm.setInputParameter("archiveSize", archiveSize_); algorithm.setInputParameter("feedBack", feedback_); // Mutation and Crossover for Real codification crossover = CrossoverFactory.getCrossoverOperator("DPX"); // crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover"); crossover.setParameter("probability", crossoverProbability_); crossover.setParameter("distributionIndex", distributionIndexForCrossover_); mutation = MutationFactory.getMutationOperator("BinaryMutation"); // mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", mutationProbability_); mutation.setParameter("distributionIndex", distributionIndexForMutation_); // Selection Operator selection = SelectionFactory.getSelectionOperator("BinaryTournament"); // Add the operators to the algorithm algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); // // Creating the indicator object // if (! paretoFrontFile_.equals("")) { // indicators = new QualityIndicator(problem_, paretoFrontFile_); // algorithm.setInputParameter("indicators", indicators) ; // } // if return algorithm; }
/** * @param args Command line arguments. The first (optional) argument specifies the problem to * solve. * @throws JMException * @throws IOException * @throws SecurityException Usage: three options - jmetal.metaheuristics.mocell.MOCell_main - * jmetal.metaheuristics.mocell.MOCell_main problemName - * jmetal.metaheuristics.mocell.MOCell_main problemName ParetoFrontFile */ public static void main(String[] args) throws JMException, IOException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator mutation; // Mutation operator QualityIndicator indicators; // Object to get quality indicators // Logger object and file to store log messages logger_ = Configuration.logger_; fileHandler_ = new FileHandler("PAES_main.log"); logger_.addHandler(fileHandler_); indicators = null; if (args.length == 1) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); } // if else if (args.length == 2) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); indicators = new QualityIndicator(problem, args[1]); } // if else { // Default problem problem = new Kursawe("ArrayReal", 3); // problem = new Fonseca("Real"); // problem = new Kursawe("BinaryReal",3); // problem = new Water("Real"); // problem = new ZDT4("Real", 1000); // problem = new WFG1("Real"); // problem = new DTLZ1("Real"); // problem = new OKA2("Real") ; } // else algorithm = new PAES(problem); // Algorithm parameters algorithm.setInputParameter("archiveSize", 100); algorithm.setInputParameter("biSections", 5); algorithm.setInputParameter("maxEvaluations", 25000); // Mutation (Real variables) mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", 1.0 / problem.getNumberOfVariables()); mutation.setParameter("distributionIndex", 20.0); // Mutation (BinaryReal variables) // mutation = MutationFactory.getMutationOperator("BitFlipMutation"); // mutation.setParameter("probability",0.1); // Add the operators to the algorithm algorithm.addOperator("mutation", mutation); // Execute the Algorithm long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; // Result messages // STEP 8. Print the results logger_.info("Total execution time: " + estimatedTime + "ms"); logger_.info("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); logger_.info("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); if (indicators != null) { logger_.info("Quality indicators"); logger_.info("Hypervolume: " + indicators.getHypervolume(population)); logger_.info("GD : " + indicators.getGD(population)); logger_.info("IGD : " + indicators.getIGD(population)); logger_.info("Spread : " + indicators.getSpread(population)); logger_.info("Epsilon : " + indicators.getEpsilon(population)); } // if } // main
/** * @param args Command line arguments. * @throws JMException * @throws IOException * @throws SecurityException Usage: three choices - jmetal.metaheuristics.nsgaII.NSGAII_main - * jmetal.metaheuristics.nsgaII.NSGAII_main problemName - * jmetal.metaheuristics.nsgaII.NSGAII_main problemName paretoFrontFile */ public static void main(String[] args) throws JMException, IOException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator QualityIndicator indicators; // Object to get quality indicators // Logger object and file to store log messages logger_ = Configuration.logger_; fileHandler_ = new FileHandler("IBEA.log"); logger_.addHandler(fileHandler_); indicators = null; if (args.length == 1) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); } // if else if (args.length == 2) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); indicators = new QualityIndicator(problem, args[1]); } // if else { // Default problem problem = new Kursawe("Real", 3); // problem = new Kursawe("BinaryReal", 3); // problem = new Water("Real"); // problem = new ZDT1("ArrayReal", 100); // problem = new ConstrEx("Real"); // problem = new DTLZ1("Real"); // problem = new OKA2("Real") ; } // else algorithm = new IBEA(problem); // Algorithm parameters algorithm.setInputParameter("populationSize", 100); algorithm.setInputParameter("archiveSize", 100); algorithm.setInputParameter("maxEvaluations", 25000); // Mutation and Crossover for Real codification crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover"); crossover.setParameter("probability", 1.0); crossover.setParameter("distribuitionIndex", 20.0); mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", 1.0 / problem.getNumberOfVariables()); mutation.setParameter("distributionIndex", 20.0); /* Mutation and Crossover Binary codification */ /* crossover = CrossoverFactory.getCrossoverOperator("SinglePointCrossover"); crossover.setParameter("probability",0.9); mutation = MutationFactory.getMutationOperator("BitFlipMutation"); mutation.setParameter("probability",1.0/80); */ /* Selection Operator */ selection = new BinaryTournament(new FitnessComparator()); // Add the operators to the algorithm algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); // Execute the Algorithm long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; // Print the results logger_.info("Total execution time: " + estimatedTime + "ms"); logger_.info("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); logger_.info("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); if (indicators != null) { logger_.info("Quality indicators"); logger_.info("Hypervolume: " + indicators.getHypervolume(population)); logger_.info("GD : " + indicators.getGD(population)); logger_.info("IGD : " + indicators.getIGD(population)); logger_.info("Spread : " + indicators.getSpread(population)); logger_.info("Epsilon : " + indicators.getEpsilon(population)); } // if } // main