/** * Gets 'size' elements from a population of more than 'size' elements using for this de * enviromentalSelection truncation * * @param size The number of elements to get. */ public SolutionSet environmentalSelection(int size) { if (solutionSet_.size() < size) { size = solutionSet_.size(); } // Create a new auxiliar population for no alter the original population SolutionSet aux = new SolutionSet(solutionSet_.size()); int i = 0; while (i < solutionSet_.size()) { if (solutionSet_.get(i).getFitness() < 1.0) { aux.add(solutionSet_.get(i)); solutionSet_.remove(i); } else { i++; } // if } // while if (aux.size() < size) { Comparator comparator = new FitnessComparator(); solutionSet_.sort(comparator); int remain = size - aux.size(); for (i = 0; i < remain; i++) { aux.add(solutionSet_.get(i)); } return aux; } else if (aux.size() == size) { return aux; } double[][] distance = distance_.distanceMatrix(aux); List<List<DistanceNode>> distanceList = new LinkedList<List<DistanceNode>>(); for (int pos = 0; pos < aux.size(); pos++) { aux.get(pos).setLocation(pos); List<DistanceNode> distanceNodeList = new ArrayList<DistanceNode>(); for (int ref = 0; ref < aux.size(); ref++) { if (pos != ref) { distanceNodeList.add(new DistanceNode(distance[pos][ref], ref)); } // if } // for distanceList.add(distanceNodeList); } // for for (int q = 0; q < distanceList.size(); q++) { Collections.sort(distanceList.get(q), distanceNodeComparator); } // for while (aux.size() > size) { double minDistance = Double.MAX_VALUE; int toRemove = 0; i = 0; Iterator<List<DistanceNode>> iterator = distanceList.iterator(); while (iterator.hasNext()) { List<DistanceNode> dn = iterator.next(); if (dn.get(0).getDistance() < minDistance) { toRemove = i; minDistance = dn.get(0).getDistance(); // i y toRemove have the same distance to the first solution } else if (dn.get(0).getDistance() == minDistance) { int k = 0; while ((dn.get(k).getDistance() == distanceList.get(toRemove).get(k).getDistance()) && k < (distanceList.get(i).size() - 1)) { k++; } if (dn.get(k).getDistance() < distanceList.get(toRemove).get(k).getDistance()) { toRemove = i; } // if } // if i++; } // while int tmp = aux.get(toRemove).getLocation(); aux.remove(toRemove); distanceList.remove(toRemove); Iterator<List<DistanceNode>> externIterator = distanceList.iterator(); while (externIterator.hasNext()) { Iterator<DistanceNode> interIterator = externIterator.next().iterator(); while (interIterator.hasNext()) { if (interIterator.next().getReference() == tmp) { interIterator.remove(); continue; } // if } // while } // while } // while return aux; } // environmentalSelection
/** * @author Juanjo This method selects N solutions from a set M, where N <= M using the same method * proposed by Qingfu Zhang, W. Liu, and Hui Li in the paper describing MOEA/D-DRA (CEC 09 * COMPTETITION) An example is giving in that paper for two objectives. If N = 100, then the * best solutions attenting to the weights (0,1), (1/99,98/99), ...,(98/99,1/99), (1,0) are * selected. * <p>Using this method result in 101 solutions instead of 100. We will just compute 100 even * distributed weights and used them. The result is the same * <p>In case of more than two objectives the procedure is: 1- Select a solution at random 2- * Select the solution from the population which have maximum distance to it (whithout * considering the already included) * @param n: The number of solutions to return * @return A solution set containing those elements */ SolutionSet finalSelection(int n) throws JMException { SolutionSet res = new SolutionSet(n); if (problem_.getNumberOfObjectives() == 2) { // subcase 1 double[][] intern_lambda = new double[n][2]; for (int i = 0; i < n; i++) { double a = 1.0 * i / (n - 1); intern_lambda[i][0] = a; intern_lambda[i][1] = 1 - a; } // for // we have now the weights, now select the best solution for each of them for (int i = 0; i < n; i++) { Solution current_best = population.get(0); int index = 0; double value = fitnessFunction(current_best, intern_lambda[i]); for (int j = 1; j < n; j++) { double aux = fitnessFunction( population.get(j), intern_lambda[i]); // we are looking the best for the weight i if (aux < value) { // solution in position j is better! value = aux; current_best = population.get(j); } } res.add(new Solution(current_best)); } } else { // general case (more than two objectives) Distance distance_utility = new Distance(); int random_index = PseudoRandom.randInt(0, population.size() - 1); // create a list containing all the solutions but the selected one (only references to them) List<Solution> candidate = new LinkedList<Solution>(); candidate.add(population.get(random_index)); for (int i = 0; i < population.size(); i++) { if (i != random_index) { candidate.add(population.get(i)); } } // for while (res.size() < n) { int index = 0; Solution selected = candidate.get(0); // it should be a next! (n <= population size!) double distance_value = distance_utility.distanceToSolutionSetInObjectiveSpace(selected, res); int i = 1; while (i < candidate.size()) { Solution next_candidate = candidate.get(i); double aux = distance_value = distance_utility.distanceToSolutionSetInObjectiveSpace(next_candidate, res); if (aux > distance_value) { distance_value = aux; index = i; } i++; } // add the selected to res and remove from candidate list res.add(new Solution(candidate.remove(index))); } // } return res; }