private static boolean matches( RelDataTypeFactory typeFactory, TableFunction member, List<RelDataType> argumentTypes) { List<Parameter> parameters = member.getParameters(); if (parameters.size() != argumentTypes.size()) { return false; } for (int i = 0; i < argumentTypes.size(); i++) { RelDataType argumentType = argumentTypes.get(i); Parameter parameter = parameters.get(i); if (!canConvert(argumentType, parameter.getType(typeFactory))) { return false; } } return true; }
/** * Constructs a new standardized SEM IM from the freeParameters in the given SEM IM. * * @param im Stop asking me for these things! The given SEM IM!!! * @param initialization CALCULATE_FROM_SEM if the initial values will be calculated from the * given SEM IM; INITIALIZE_FROM_DATA if data will be simulated from the given SEM, * standardized, and estimated. */ public StandardizedSemIm(SemIm im, Initialization initialization) { this.semPm = new SemPm(im.getSemPm()); this.semGraph = new SemGraph(semPm.getGraph()); semGraph.setShowErrorTerms(true); if (semGraph.existsDirectedCycle()) { throw new IllegalArgumentException("The cyclic case is not handled."); } if (initialization == Initialization.CALCULATE_FROM_SEM) { // This code calculates the new coefficients directly from the old ones. edgeParameters = new HashMap<Edge, Double>(); List<Node> nodes = im.getVariableNodes(); TetradMatrix impliedCovar = im.getImplCovar(true); for (Parameter parameter : im.getSemPm().getParameters()) { if (parameter.getType() == ParamType.COEF) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); int aindex = nodes.indexOf(a); int bindex = nodes.indexOf(b); double vara = impliedCovar.get(aindex, aindex); double stda = Math.sqrt(vara); double varb = impliedCovar.get(bindex, bindex); double stdb = Math.sqrt(varb); double oldCoef = im.getEdgeCoef(a, b); double newCoef = (stda / stdb) * oldCoef; edgeParameters.put(Edges.directedEdge(a, b), newCoef); } else if (parameter.getType() == ParamType.COVAR) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); Node exoa = semGraph.getExogenous(a); Node exob = semGraph.getExogenous(b); double covar = im.getErrCovar(a, b) / Math.sqrt(im.getErrVar(a) * im.getErrVar(b)); edgeParameters.put(Edges.bidirectedEdge(exoa, exob), covar); } } } else { // This code estimates the new coefficients from simulated data from the old model. DataSet dataSet = im.simulateData(1000, false); TetradMatrix _dataSet = dataSet.getDoubleData(); _dataSet = DataUtils.standardizeData(_dataSet); DataSet dataSetStandardized = ColtDataSet.makeData(dataSet.getVariables(), _dataSet); SemEstimator estimator = new SemEstimator(dataSetStandardized, im.getSemPm()); SemIm imStandardized = estimator.estimate(); edgeParameters = new HashMap<Edge, Double>(); for (Parameter parameter : imStandardized.getSemPm().getParameters()) { if (parameter.getType() == ParamType.COEF) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); double coef = imStandardized.getEdgeCoef(a, b); edgeParameters.put(Edges.directedEdge(a, b), coef); } else if (parameter.getType() == ParamType.COVAR) { Node a = parameter.getNodeA(); Node b = parameter.getNodeB(); Node exoa = semGraph.getExogenous(a); Node exob = semGraph.getExogenous(b); double covar = -im.getErrCovar(a, b) / Math.sqrt(im.getErrVar(a) * im.getErrVar(b)); edgeParameters.put(Edges.bidirectedEdge(exoa, exob), covar); } } } this.measuredNodes = Collections.unmodifiableList(semPm.getMeasuredNodes()); }