/** * This is a test for compute depth of genome and trace all debug information for viewing all * signal flowing is not necessary for network simulation */ public static void Experiment2(String xFileName) { StringTokenizer st; String curword; String xline; String fnamebuf; IOseq xFile; int id; Genome g1 = null; Network net = null; System.out.println("------ Start experiment 2 -------"); xFile = new IOseq(xFileName); boolean ret = xFile.IOseqOpenR(); if (ret) { try { System.out.println(" Start experiment 2"); System.out.println(" Read start genome.."); xline = xFile.IOseqRead(); st = new StringTokenizer(xline); // skip curword = st.nextToken(); // id of genome can be readed curword = st.nextToken(); id = Integer.parseInt(curword); g1 = new Genome(id, xFile); // generate a link mutation g1.mutate_link_weight(Neat.p_weight_mut_power, 1.0, NeatConstant.GAUSSIAN); // generate from genome the phenotype g1.genesis(id); // view genotype g1.op_view(); // assign reference to genotype net = g1.phenotype; // compute first the 'teorical' depth int lx = net.max_depth(); // compute . after, the 'pratical' depth passing // the virtual depth; int dx = net.is_stabilized(lx); // after reset all value of net net.flush(); System.out.print("\n For genome : " + xFileName + " : max depth virtuale=" + lx); System.out.print(", max depth reale=" + dx); if (dx != lx) System.out.print("\n *ALERT* This net is NOT S T A B L E "); net.flush(); double errorsum = 0.0; double[] out = new double[4]; // The four outputs int numnodes = 0; int net_depth = 0; // The max depth of the network to be activated int count = 0; boolean success = false; double in[] = {1.0, 1.0, 1.0}; count = 0; // first activation from sensor to first next level of neurons net.load_sensors(in); // first activation.... success = net.activate(); // next activation while last level is reached ! // use depth to ensure relaxation for (int relax = 1; relax <= dx; relax++) { success = net.activate(); // System.out.print("\n -----TIME <"+relax+"> -----"); } // ok : the propagation is completed } catch (Throwable e) { System.err.println(e + " : error during open " + xFileName); } xFile.IOseqCloseR(); } else System.err.print("\n : error during open " + xFileName); System.out.println("\n\n End of experiment"); }
/** Insert the method's description here. Creation date: (16/01/2002 9.53.37) */ public static boolean xor_evaluate(Organism organism) { Network _net = null; boolean success = false; double errorsum = 0.0; double[] out = new double[4]; // The four outputs // int numnodes = 0; int net_depth = 0; // The max depth of the network to be activated int count = 0; // The four possible input combinations to xor // The first number is for biasing double in[][] = {{1.0, 0.0, 0.0}, {1.0, 0.0, 1.0}, {1.0, 1.0, 0.0}, {1.0, 1.0, 1.0}}; _net = organism.net; // numnodes = organism.genome.nodes.size(); net_depth = _net.max_depth(); // for each example , 'count', propagate signal .... and compute results for (count = 0; count <= 3; count++) { // first activation from sensor to first next levelof neurons _net.load_sensors(in[count]); success = _net.activate(); // next activation while last level is reached ! // use depth to ensure relaxation for (int relax = 0; relax <= net_depth; relax++) success = _net.activate(); // ok : the propagation is completed : repeat until all examples are presented out[count] = ((NNode) _net.getOutputs().firstElement()).getActivation(); _net.flush(); } // control the result if (success) { errorsum = (double) (Math.abs(out[0]) + Math.abs(1.0 - out[1]) + Math.abs(1.0 - out[2]) + Math.abs(out[3])); organism.setFitness(Math.pow((4.0 - errorsum), 2)); organism.setError(errorsum); } else { errorsum = 999.0; organism.setFitness(0.001); organism.setError(errorsum); } String mask03 = "0.000"; DecimalFormat fmt03 = new DecimalFormat(mask03); if ((out[0] < 0.5) && (out[1] >= 0.5) && (out[2] >= 0.5) && (out[3] < 0.5)) { organism.setWinner(true); return true; } else { organism.setWinner(false); return false; } }