private void prim(int s, StringBuilder sb) { distTo[s] = 0; pq.insert(s, distTo[s]); while (!pq.isEmpty()) { int v = pq.delMin(); if (v != s) { Route r = edgeTo[v]; String str = String.format("%s, %s : %d\n", r.fst(), r.snd(), r.distance()); sb.append(str); } scan(v); } }
// Option 4 public void shortestByCost(String c1, String c2) { System.out.println("SHORTEST COST PATH from " + c1 + " to " + c2); System.out.println("--------------------------------------------------------"); City city1 = null; City city2 = null; for (int i = 0; i < numCities; i++) { if (cities[i].name().equals(c1)) { city1 = cities[i]; } if (cities[i].name().equals(c2)) { city2 = cities[i]; } } if (c1.equals(c2) || city1 == null || city2 == null) { System.out.println("Invalid city choice(s)"); return; } costTo = new double[numCities]; edgeTo = new Route[numCities]; for (int i = 0; i < numCities; i++) costTo[i] = Double.POSITIVE_INFINITY; costTo[city1.id() - 1] = 0; // relax vertices in order of distance from s costPQ = new IndexMinPQ<Double>(numCities); costPQ.insert(city1.id() - 1, costTo[city1.id() - 1]); while (!costPQ.isEmpty()) { int v = costPQ.delMin(); for (Route r : adj[v]) relaxC(r, v); } if (costTo[city2.id() - 1] == Double.POSITIVE_INFINITY) { System.out.println("No path"); return; } System.out.printf("Shortest cost from %s to %s is %.2f\n", c1, c2, costTo[city2.id() - 1]); System.out.println("Path with edges (in reverse order):"); City currCity = city2; for (Route r = edgeTo[city2.id() - 1]; r != null; r = edgeTo[currCity.id() - 1]) { System.out.print(currCity + " " + r.price() + " "); currCity = r.other(currCity); } System.out.println(currCity); }
// Option 3 public void shortestByDistance(String c1, String c2) { System.out.println("SHORTEST DISTANCE PATH from " + c1 + " to " + c2); System.out.println("--------------------------------------------------------"); City city1 = null; City city2 = null; for (int i = 0; i < numCities; i++) { if (cities[i].name().equals(c1)) { city1 = cities[i]; } if (cities[i].name().equals(c2)) { city2 = cities[i]; } } if (c1.equals(c2) || city1 == null || city2 == null) { System.out.println("Invalid city choice(s)"); return; } distTo = new int[numCities]; edgeTo = new Route[numCities]; for (int i = 0; i < numCities; i++) distTo[i] = Integer.MAX_VALUE; distTo[city1.id() - 1] = 0; // relax vertices in order of distance from s pq = new IndexMinPQ<Integer>(numCities); pq.insert(city1.id() - 1, distTo[city1.id() - 1]); while (!pq.isEmpty()) { int v = pq.delMin(); for (Route r : adj[v]) relaxD(r, v); } if (distTo[city2.id() - 1] == Integer.MAX_VALUE) { System.out.println("No path"); return; } System.out.printf("Shortest distance from %s to %s is %d\n", c1, c2, distTo[city2.id() - 1]); System.out.println("Path with edges (in reverse order):"); City currCity = city2; for (Route r = edgeTo[city2.id() - 1]; r != null; r = edgeTo[currCity.id() - 1]) { System.out.print(currCity + " " + r.distance() + " "); currCity = r.other(currCity); } System.out.println(currCity); }