public TopicScores getDistanceFromUniform() { int[] tokensPerTopic = model.tokensPerTopic; TopicScores scores = new TopicScores("uniform_dist", numTopics, numTopWords); scores.wordScoresDefined = true; int numTypes = alphabet.size(); for (int topic = 0; topic < numTopics; topic++) { double topicScore = 0.0; int position = 0; TreeSet<IDSorter> sortedWords = topicSortedWords.get(topic); for (IDSorter info : sortedWords) { int type = info.getID(); double count = info.getWeight(); double score = (count / tokensPerTopic[topic]) * Math.log((count * numTypes) / tokensPerTopic[topic]); if (position < numTopWords) { scores.setTopicWordScore(topic, position, score); } topicScore += score; position++; } scores.setTopicScore(topic, topicScore); } return scores; }
/** Low-quality topics may have words that are also prominent in other topics. */ public TopicScores getExclusivity() { int[] tokensPerTopic = model.tokensPerTopic; TopicScores scores = new TopicScores("exclusivity", numTopics, numTopWords); scores.wordScoresDefined = true; double sumDefaultProbs = 0.0; for (int topic = 0; topic < numTopics; topic++) { sumDefaultProbs += model.beta / (model.betaSum + tokensPerTopic[topic]); } for (int topic = 0; topic < numTopics; topic++) { double topicScore = 0.0; int position = 0; TreeSet<IDSorter> sortedWords = topicSortedWords.get(topic); for (IDSorter info : sortedWords) { int type = info.getID(); double count = info.getWeight(); double sumTypeProbs = sumDefaultProbs; int[] topicCounts = model.typeTopicCounts[type]; int index = 0; while (index < topicCounts.length && topicCounts[index] > 0) { int otherTopic = topicCounts[index] & model.topicMask; int otherCount = topicCounts[index] >> model.topicBits; // We've already accounted for the smoothing parameter, // now we need to add the actual count for the non-zero // topics. sumTypeProbs += ((double) otherCount) / (model.betaSum + tokensPerTopic[otherTopic]); index++; } double score = ((model.beta + count) / (model.betaSum + tokensPerTopic[topic])) / sumTypeProbs; scores.setTopicWordScore(topic, position, score); topicScore += score; position++; if (position == numTopWords) { break; } } scores.setTopicScore(topic, topicScore / numTopWords); } return scores; }
public TopicScores getTokenDocumentDiscrepancies() { TopicScores scores = new TopicScores("token-doc-diff", numTopics, numTopWords); scores.wordScoresDefined = true; for (int topic = 0; topic < numTopics; topic++) { int[][] matrix = topicCodocumentMatrices[topic]; TreeSet<IDSorter> sortedWords = topicSortedWords.get(topic); double topicScore = 0.0; double[] wordDistribution = new double[numTopWords]; double[] docDistribution = new double[numTopWords]; double wordSum = 0.0; double docSum = 0.0; int position = 0; Iterator<IDSorter> iterator = sortedWords.iterator(); while (iterator.hasNext() && position < numTopWords) { IDSorter info = iterator.next(); wordDistribution[position] = info.getWeight(); docDistribution[position] = matrix[position][position]; wordSum += wordDistribution[position]; docSum += docDistribution[position]; position++; } for (position = 0; position < numTopWords; position++) { double p = wordDistribution[position] / wordSum; double q = docDistribution[position] / docSum; double meanProb = 0.5 * (p + q); double score = 0.0; if (p > 0) { score += 0.5 * p * Math.log(p / meanProb); } if (q > 0) { score += 0.5 * q * Math.log(q / meanProb); } scores.setTopicWordScore(topic, position, score); topicScore += score; } scores.setTopicScore(topic, topicScore); } return scores; }
/** Low-quality topics may be very similar to the global distribution. */ public TopicScores getDistanceFromCorpus() { int[] tokensPerTopic = model.tokensPerTopic; TopicScores scores = new TopicScores("corpus_dist", numTopics, numTopWords); scores.wordScoresDefined = true; for (int topic = 0; topic < numTopics; topic++) { double coefficient = (double) numTokens / tokensPerTopic[topic]; double topicScore = 0.0; int position = 0; TreeSet<IDSorter> sortedWords = topicSortedWords.get(topic); for (IDSorter info : sortedWords) { int type = info.getID(); double count = info.getWeight(); double score = (count / tokensPerTopic[topic]) * Math.log(coefficient * count / wordTypeCounts[type]); if (position < numTopWords) { // System.out.println(alphabet.lookupObject(type) + ": " + count + " * " + numTokens + " / // " + wordTypeCounts[type] + " * " + tokensPerTopic[topic] + " = " + (coefficient * count // / wordTypeCounts[type])); scores.setTopicWordScore(topic, position, score); } topicScore += score; position++; } scores.setTopicScore(topic, topicScore); } return scores; }
public TopicScores getEffectiveNumberOfWords() { int[] tokensPerTopic = model.tokensPerTopic; TopicScores scores = new TopicScores("eff_num_words", numTopics, numTopWords); int numTypes = alphabet.size(); for (int topic = 0; topic < numTopics; topic++) { double sumSquaredProbabilities = 0.0; TreeSet<IDSorter> sortedWords = topicSortedWords.get(topic); for (IDSorter info : sortedWords) { int type = info.getID(); double probability = info.getWeight() / tokensPerTopic[topic]; sumSquaredProbabilities += probability * probability; } scores.setTopicScore(topic, 1.0 / sumSquaredProbabilities); } return scores; }
public String toXML() { int[] tokensPerTopic = model.tokensPerTopic; StringBuilder out = new StringBuilder(); Formatter formatter = new Formatter(out, Locale.US); out.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"); out.append("<model>\n"); for (int topic = 0; topic < numTopics; topic++) { int[][] matrix = topicCodocumentMatrices[topic]; formatter.format("<topic id='%d'", topic); for (TopicScores scores : diagnostics) { formatter.format(" %s='%.4f'", scores.name, scores.scores[topic]); } out.append(">\n"); TreeSet<IDSorter> sortedWords = topicSortedWords.get(topic); // How many words should we report? Some topics may have fewer than // the default number of words with non-zero weight. int limit = numTopWords; if (sortedWords.size() < numTopWords) { limit = sortedWords.size(); } double cumulativeProbability = 0.0; Iterator<IDSorter> iterator = sortedWords.iterator(); for (int position = 0; position < limit; position++) { IDSorter info = iterator.next(); double probability = info.getWeight() / tokensPerTopic[topic]; cumulativeProbability += probability; formatter.format( "<word rank='%d' count='%.0f' prob='%.5f' cumulative='%.5f' docs='%d'", position + 1, info.getWeight(), probability, cumulativeProbability, matrix[position][position]); for (TopicScores scores : diagnostics) { if (scores.wordScoresDefined) { formatter.format(" %s='%.4f'", scores.name, scores.topicWordScores[topic][position]); } } formatter.format( ">%s</word>\n", topicTopWords[topic][position].replaceAll("&", "&").replaceAll("<", ">")); } out.append("</topic>\n"); } out.append("</model>\n"); return out.toString(); }