@Test public void testSizeIncrement() { bag.add(test, 1); bag.add(test1, 1); Assert.assertEquals(2, bag.size()); bag.add(test1, 3); Assert.assertEquals(5, bag.size()); }
@Test public void testSingularRemoval() { bag.add(test, 5); Assert.assertTrue(bag.remove(test)); Assert.assertEquals(4, bag.size()); }
@Test public void testGetCount() { Bag<String> bag = new Bag<>(); String test = "Hello World"; bag.add(test, 5); Assert.assertEquals(5, bag.getCount(test)); }
@Test public void testIsEmpty() { Assert.assertTrue(bag.isEmpty()); bag.add("Hello World"); Assert.assertFalse(bag.isEmpty()); }
@Test public void testMultipleRemoval() { bag.add(test, 5); Assert.assertTrue(bag.remove(test, 3)); Assert.assertEquals(2, bag.size()); Assert.assertTrue(bag.remove(test)); Assert.assertEquals(1, bag.size()); }
private UpperclassHousingSelection() { dorms = new Bag(); // actually mixed-year but for simplicity I'm keeping it // upperclassman only for now Dorm Arrington = new Dorm("Arrington", false, false, 74); Dorm Ball = new Dorm("Ball", true, false, 53); Dorm Custis = new Dorm("Custis", false, false, 21); Dorm EagleLanding = new Dorm("Eagle Landing", false, false, 312); Dorm Framar = new Dorm("Framar", false, false, 11); Dorm Madison = new Dorm("Madison", false, false, 21); Dorm Marshall = new Dorm("Marshall", false, false, 74); Dorm Mason = new Dorm("Mason", false, false, 93); Dorm Westmoreland = new Dorm("Westmoreland", false, false, 56); // Willard houses students in single rooms which is not accounted for yet Dorm Willard = new Dorm("Willard", false, false, 91); // 100 of the rooms in the aparments are singles which is not // accounted for yet Dorm Apartments = new Dorm("Apartments", false, false, 381); // for extraneous students who commute or live off campus Dorm Offcampus = new Dorm("Offcampus", false, false, 3500); dorms.add(Ball); dorms.add(Arrington); dorms.add(Custis); dorms.add(Framar); dorms.add(Madison); dorms.add(Mason); dorms.add(Westmoreland); dorms.add(Willard); dorms.add(Apartments); dorms.add(EagleLanding); dorms.add(Offcampus); }
@Test public void add0Items() { Assert.assertFalse(bag.add("Zero", 0)); }
@Test public void testAddDuplicate() { bag.add(test, 5); bag.add(test, 5); Assert.assertEquals(10, bag.getCount(test)); }
@Test public void testSimpleAdd() { Assert.assertTrue(bag.add("Hello World")); }
@Test public void testRemovalOfNotAddedObject() { bag.add("Added"); Assert.assertFalse(bag.remove("Not Added")); }
// main CELL CA loop************ public boolean iterateCells() { /* // modify consumption matrix for (int i=0;i<size;i++) for (int j=0;j<size;j++) consumption[i][j] = consumptionBasal[Cells[i][j]]; */ // if (cellList == null) cellList = new Bag(size * size); for (int i = 0; i < size; i++) for (int j = 0; j < size; j++) { if (Cells[i][j] < 4) { // All tumour cell types have Cell > 0, now 0 corresponds to 'healthy cells' that // consume at basal rate only int[] p = new int[2]; p[0] = i; p[1] = j; cellList.add(p); if (Cells[i][j] == 1) { stem_cells_this_TS++; } else if (Cells[i][j] == 2 || Cells[i][j] == 3) { non_stem_cells_this_TS++; } } } while (cellList.size() != 0) { // Select the next lattice element at random int randomElemIndex = 0; if (cellList.size() > 1) randomElemIndex = random.nextInt(cellList.size() - 1); int[] point = (int[]) cellList.get(randomElemIndex); int rI = point[0]; int rJ = point[1]; cellList.remove(randomElemIndex); // Remove it from the cell list int cell = Cells[rI][rJ]; // Cell death // if ((Oxygen[rI][rJ]<hypoxia)) { if ((random.nextFloat() < deathprob) && Cells[rI][rJ] > 0) { // x% chances of dying Age[rI][rJ] = 0; if (Cells[rI][rJ] == 1) stemDeathCounter[rI][rJ]++; if (Cells[rI][rJ] < 4) { // TACDeathCounter[rI][rJ]++; Cells[rI][rJ] = 4; // was 0, now making necrotic area (truly empty) deaths++; stemBirthCounter[rI][rJ] = 0; carriedmutation[rI][rJ] = 0; // empty space now has no mutations carriedGenome[rI][rJ] = initGenome; // empty space now has no mutations } } else if ((cell == 3) && (Age[rI][rJ] > 100 * maxMatureCellAge)) { // added * to allow for an update each celltimestep/x // ************************** Age[rI][rJ] = 0; Cells[rI][rJ] = 4; // was 0, now making necrotic area (truly empty) // TACDeathCounter[rI][rJ]++; deaths++; } else if ((radiotherapy) && (cell == 2) && (random.nextFloat() > Oxygen[rI][rJ])) { // Radiotherapy Age[rI][rJ] = 0; if (Cells[rI][rJ] == 1) stemDeathCounter[rI][rJ]++; if ((Cells[rI][rJ] == 2) || (Cells[rI][rJ] == 3)) // TACDeathCounter[rI][rJ]++; Cells[rI][rJ] = 4; // make necrotic stemBirthCounter[rI][rJ] = 0; deaths++; } // healthy division else if ((cell == 0) && (vacantSites(rI, rJ) > 0)) { if (proliferation[cell] >= random.nextFloat()) { // If tossing the coin we are to proliferate... // if (Oxygen[rI][rJ]>prolifThreshold) { // AND the oxygen concentration is enough for // division.. // consumption[rI][rJ]=consumptionDivision[Cells[rI][rJ]]; int[] daughter = findEmptySite(rI, rJ); births++; Cells[daughter[0]][daughter[1]] = 0; carriedmutation[daughter[0]][daughter[1]] = 0; carriedGenome[daughter[0]][daughter[1]] = initGenome; // resetting space to healthy cell with no mutations } } // } // cancer division else if ((vacantSitesCancer(rI, rJ) > 0) && (cell > 0)) if (proliferation[cell] >= random.nextFloat()) { // If tossing the coin we are to proliferate... if ((cell == 1) || ((cell == 2) && (Age[rI][rJ] < maxProDivisions))) { // AND the cell is stem or TAC ... // if (Oxygen[rI][rJ]>prolifThreshold) { // AND the oxygen concentration is enough for // division.. // consumption[rI][rJ]=consumptionDivision[Cells[rI][rJ]]; int[] daughter = findEmptySiteCancer(rI, rJ); // and there is space (for cancer) // if ((daughter[0]==0) || (daughter[0]==size) || // (daughter[1]==0)||(daughter[1]==size)) {simulationFinished=true;} // stop sim if a // cell hits the edge births++; if (cell == 1) { // stem cell stemBirthsTotal[rI][rJ]++; stemBirthCounter[rI][rJ]++; if (asymmetricRatio > random.nextFloat()) { Cells[daughter[0]][daughter[1]] = 1; // placing the stem daughter stemBirthCounter[daughter[0]][daughter[1]] = stemBirthCounter[rI][rJ]; // update stem birth counter carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // inherit mutational status of parent carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; // inherit mutational status of parent if (mutfreq > random.nextFloat()) { // small chance of mutation mutationNum++; // advance mutation number System.out.println( +carriedmutation[rI][rJ] + ", " + mutationNum + ", " + stem_cells_this_TS + ", " + non_stem_cells_this_TS + ", " + timestep); // print (parent,child) pair // tree.put(carriedmutation[rI][rJ], mutationNum); // timeTree.put(mutationNum, timestep); // hash table stuff if (0.5 > random.nextFloat()) { carriedmutation[daughter[0]][daughter[1]] = mutationNum; genomeToMod = new StringBuilder(carriedGenome[daughter[0]][daughter[1]]); genomeToMod.setCharAt( mutationNum - 1, '1'); // daughter carries new carriedGenome carriedGenome[daughter[0]][daughter[1]] = genomeToMod; // System.out.println (carriedGenome[rI][rJ]); // System.out.println (carriedGenome[daughter[0]][daughter[1]]); } // 50:50 mutate new position daughter else { carriedmutation[rI][rJ] = mutationNum; // else mutate original position daughter genomeToMod = new StringBuilder(carriedGenome[rI][rJ]); // genomeToMod = carriedGenome[rI][rJ]; carriedGenome[rI][rJ] = genomeToMod; genomeToMod.setCharAt( mutationNum - 1, '1'); // original carries new carriedGenome // System.out.println (carriedGenome[rI][rJ]); // System.out.println (carriedGenome[daughter[0]][daughter[1]]); } } } else { Cells[daughter[0]][daughter[1]] = 2; // asymmetric division, daughter is TAC stemBirthCounter[daughter[0]][daughter[1]] = 0; // reset stem counter carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // TAC carries parental mutation flag carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; } // TAC carries parental genome // } // redundant from above // else { // Only if there's hypoxia induced change of symmetric division ratio // float newASR=asymmetricRatio+0*(hypoxia-Oxygen[rI][rJ]); // currently OFF by way of 0 the ^^ multiplier. // if (newASR>random.nextFloat()) // {Cells[daughter[0]][daughter[1]]=1;stemBirthCounter[daughter[0]][daughter[1]]=stemBirthCounter[rI][rJ];} // else // {Cells[daughter[0]][daughter[1]]=2;stemBirthCounter[daughter[0]][daughter[1]]=0;} // // Otherwise differentiate // } } else if (cell == 2) { // non-stem division // TACBirthCounter[rI][rJ]++; if (Age[rI][rJ] < maxProDivisions - 1) { Cells[daughter[0]][daughter[1]] = 2; Age[rI][rJ]++; Age[daughter[0]][daughter[1]] = Age[rI][rJ]; carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // TAC carries parental mutation flag carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; // TAC carries parental genome } else { Cells[daughter[0]][daughter[1]] = 3; Cells[rI][rJ] = 3; Age[rI][rJ] = 0; Age[daughter[0]][daughter[1]] = Age[rI][rJ]; carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // TAC carries parental mutation flag carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; // TAC carries parental genome } } } } else if (pMotility > random.nextFloat()) { // Migration = not in use int[] daughter = findEmptySite(rI, rJ); Cells[daughter[0]][daughter[1]] = cell; Cells[rI][rJ] = 0; Age[daughter[0]][daughter[1]] = Age[rI][rJ]; Age[rI][rJ] = 0; System.err.println("moving " + rI + ", " + rJ); } // Aging for mature cells if (cell == 3) Age[rI][rJ]++; } return true; }
/* Test the ArrayBag implementation. */ public static void main(String[] args) { // Create a Scanner object for user input. Scanner in = new Scanner(System.in); // Create an ArrayBag named bag1. System.out.print("Size of bag 1: "); int size = in.nextInt(); Bag bag1 = new ArrayBag(size); in.nextLine(); // consume the rest of the line // ****** Additions ***** // Display capacity of new bag System.out.println("Bag 1 can hold up to " + bag1.capacity() + " items."); // Determine if ArrayBag is full if (bag1.isFull()) System.out.println("Bag is full."); else System.out.println("Bag is NOT full."); // Read in strings, add them to bag1, and print out bag1. String itemStr; for (int i = 0; i < size; i++) { System.out.print("item " + i + ": "); itemStr = in.nextLine(); bag1.add(itemStr); } System.out.println("bag 1 = " + bag1); System.out.println(); // Increase capacity by 2 System.out.println("Increasing Bag 1 capacity by 2."); bag1.increaseCapacity(2); System.out.println("Bag 1 can hold up to " + bag1.capacity() + " items."); // Select a random item and print it. Object item = bag1.grab(); System.out.println("grabbed " + item); System.out.println(); // Iterate over the objects in bag1, printing them one per // line. Object[] items = bag1.toArray(); for (int i = 0; i < items.length; i++) System.out.println(items[i]); System.out.println(); // Get an item to remove from bag1, remove it, and reprint the bag. System.out.print("item to remove: "); itemStr = in.nextLine(); if (bag1.contains(itemStr)) bag1.remove(itemStr); System.out.println("bag 1 = " + bag1); System.out.println(); // Remove all items from bag1 and reprint the bag. Bag other1 = new ArrayBag(2); other1.add("ff"); other1.add("aa"); System.out.println("Removing all items {aa, ff}"); bag1.removeItems(other1); System.out.println("bag 1 = " + bag1); System.out.println(); // Create two ArrayBags and return their union (with no duplicates) // {2, 2, 3, 5, 7, 7, 7, 8} Bag b1 = new ArrayBag(8); b1.add("2"); b1.add("2"); b1.add("3"); b1.add("5"); b1.add("7"); b1.add("7"); b1.add("7"); b1.add("8"); System.out.println("Bag b1 is " + b1); // {2, 3, 4, 5, 5, 6, 7} Bag b2 = new ArrayBag(7); b2.add("2"); b2.add("3"); b2.add("4"); b2.add("5"); b2.add("5"); b2.add("6"); b2.add("7"); System.out.println("Bag b2 is " + b2); // Be sure to test case with zero items Bag b3 = new ArrayBag(); b3 = b1.unionWith(b2); System.out.println("Union of b1 & b2 is " + b3); System.out.println("b3 capacity is " + b3.capacity()); System.out.println(); }