Esempio n. 1
0
 public void initializePQ(MyGraph graph) {
   for (String vertex : graph.getVertices()) {
     pq.add(vertex, Double.POSITIVE_INFINITY);
     toVisit.add(vertex);
     distance.put(vertex, Double.POSITIVE_INFINITY);
     parent.put(vertex, null);
   }
 }
Esempio n. 2
0
  public void executeDijkstra(MyGraph graph, String start) {

    initializePQ(graph);

    source = start;
    pq.changePriority("a", 0.0);
    distance.put(source, 0.0);
    parent.put(source, source);
    visited.add(source);
    toVisit.remove(source);

    String last_added = pq.removeMin();
    HashMap<String, Double> neighbouring_edges = graph.getEdgesFrom(last_added);

    while (!toVisit.isEmpty()) {
      /*for(String vertex : visited){
      	System.out.print(vertex + " ");
      }
      System.out.println();*/
      // First change the priorities considering the new crossing edges from last_added.
      // last_added is u and vertex is v in the edge (u,v). weight(u,v) is graph.getEdge(u,v)
      for (String vertex : neighbouring_edges.keySet()) {
        if (toVisit.contains(vertex)) {
          if (parent.get(vertex) == null) {
            parent.put(vertex, last_added);
            distance.put(vertex, distance.get(last_added) + graph.getEdge(last_added, vertex));
            pq.changePriority(vertex, distance.get(vertex));
          } else {
            // if the new crossing edges allow for a shorter path to vertex
            if (distance.get(last_added) + graph.getEdge(last_added, vertex)
                < distance.get(vertex)) {
              parent.put(vertex, last_added);
              distance.put(vertex, distance.get(last_added) + graph.getEdge(last_added, vertex));
              pq.changePriority(vertex, distance.get(vertex));
            }
          }
        }
      }
      // Once the pq has been updated, remove the min vertex
      last_added = pq.removeMin();
      neighbouring_edges = graph.getEdgesFrom(last_added);
      toVisit.remove(last_added);
      visited.add(last_added);
    }
  }