/** * This method trains a stacked autoencoder * * @param trainData Training dataset as a JavaRDD * @param batchSize Size of a training mini-batch * @param layerSizes Number of neurons for each layer * @param epochs Number of epochs to train * @param responseColumn Name of the response column * @param modelName Name of the model * @return DeepLearningModel */ public DeepLearningModel train( JavaRDD<LabeledPoint> trainData, int batchSize, int[] layerSizes, String activationType, int epochs, String responseColumn, String modelName, MLModel mlModel, long modelID) { // build stacked autoencoder by training the model with training data double trainingFraction = 1; try { Scope.enter(); if (trainData != null) { int numberOfFeatures = mlModel.getFeatures().size(); List<Feature> features = mlModel.getFeatures(); String[] names = new String[numberOfFeatures + 1]; for (int i = 0; i < numberOfFeatures; i++) { names[i] = features.get(i).getName(); } names[numberOfFeatures] = mlModel.getResponseVariable(); Frame frame = DeeplearningModelUtils.javaRDDToFrame(names, trainData); // H2O uses default C<x> for column header // String classifColName = "C" + frame.numCols(); String classifColName = mlModel.getResponseVariable(); // Convert response to categorical (digits 1 to <num of columns>) int ci = frame.find(classifColName); Scope.track(frame.replace(ci, frame.vecs()[ci].toEnum())._key); // Splitting train file to train, validation and test // Using FrameSplitter (instead of SuffleSplitFrame) gives a weird exception // barrier onExCompletion for hex.deeplearning.DeepLearning$DeepLearningDriver@78ec854 double[] ratios = new double[] {trainingFraction, 1 - trainingFraction}; @SuppressWarnings("unchecked") Frame[] splits = ShuffleSplitFrame.shuffleSplitFrame( frame, generateNumKeys(frame._key, ratios.length), ratios, 123456789); Frame trainFrame = splits[0]; Frame vframe = splits[1]; if (log.isDebugEnabled()) { log.debug("Creating Deeplearning parameters"); } DeepLearningParameters deeplearningParameters = new DeepLearningParameters(); // convert model name String dlModelName = modelName.replace('.', '_').replace('-', '_'); // populate model parameters deeplearningParameters._model_id = Key.make(dlModelName + "_dl"); deeplearningParameters._train = trainFrame._key; deeplearningParameters._valid = vframe._key; deeplearningParameters._response_column = classifColName; // last column is the response // This is causin all the predictions to be 0.0 // p._autoencoder = true; deeplearningParameters._activation = getActivationType(activationType); deeplearningParameters._hidden = layerSizes; deeplearningParameters._train_samples_per_iteration = batchSize; deeplearningParameters._input_dropout_ratio = 0.2; deeplearningParameters._l1 = 1e-5; deeplearningParameters._max_w2 = 10; deeplearningParameters._epochs = epochs; // speed up training deeplearningParameters._adaptive_rate = true; // disable adaptive per-weight learning rate -> default // settings for learning rate and momentum are probably // not ideal (slow convergence) deeplearningParameters._replicate_training_data = true; // avoid extra communication cost upfront, got // enough data on each node for load balancing deeplearningParameters._overwrite_with_best_model = true; // no need to keep the best model around deeplearningParameters._diagnostics = false; // no need to compute statistics during training deeplearningParameters._classification_stop = -1; deeplearningParameters._score_interval = 60; // score and print progress report (only) every 20 seconds deeplearningParameters._score_training_samples = batchSize / 10; // only score on a small sample of the // training set -> don't want to spend // too much time scoring (note: there // will be at least 1 row per chunk) DKV.put(trainFrame); DKV.put(vframe); deeplearning = new DeepLearning(deeplearningParameters); if (log.isDebugEnabled()) { log.debug("Start training deeplearning model ...."); } try { dlModel = deeplearning.trainModel().get(); if (log.isDebugEnabled()) { log.debug("Successfully finished Training deeplearning model."); } } catch (RuntimeException ex) { log.error("Error in training Stacked Autoencoder classifier model", ex); } } else { log.error("Train file not found!"); } } catch (RuntimeException ex) { log.error("Failed to train the deeplearning model [id] " + modelID + ". " + ex.getMessage()); } finally { Scope.exit(); } return dlModel; }
@Test @Ignore public void run() { Scope.enter(); try { File file = find_test_file("bigdata/laptop/mnist/train.csv.gz"); File valid = find_test_file("bigdata/laptop/mnist/test.csv.gz"); if (file != null) { NFSFileVec trainfv = NFSFileVec.make(file); Frame frame = ParseDataset.parse(Key.make(), trainfv._key); NFSFileVec validfv = NFSFileVec.make(valid); Frame vframe = ParseDataset.parse(Key.make(), validfv._key); DeepLearningParameters p = new DeepLearningParameters(); // populate model parameters p._model_id = Key.make("dl_mnist_model"); p._train = frame._key; // p._valid = vframe._key; p._response_column = "C785"; // last column is the response p._activation = DeepLearningParameters.Activation.RectifierWithDropout; // p._activation = DeepLearningParameters.Activation.MaxoutWithDropout; p._hidden = new int[] {800, 800}; p._input_dropout_ratio = 0.2; p._mini_batch_size = 1; p._train_samples_per_iteration = 50000; p._score_duty_cycle = 0; // p._shuffle_training_data = true; // p._l1= 1e-5; // p._max_w2= 10; p._epochs = 10 * 5. / 6; // Convert response 'C785' to categorical (digits 1 to 10) int ci = frame.find("C785"); Scope.track(frame.replace(ci, frame.vecs()[ci].toEnum())._key); Scope.track(vframe.replace(ci, vframe.vecs()[ci].toEnum())._key); DKV.put(frame); DKV.put(vframe); // speed up training p._adaptive_rate = true; // disable adaptive per-weight learning rate -> default settings for learning rate // and momentum are probably not ideal (slow convergence) p._replicate_training_data = true; // avoid extra communication cost upfront, got enough data on each node for load // balancing p._overwrite_with_best_model = true; // no need to keep the best model around p._classification_stop = -1; p._score_interval = 60; // score and print progress report (only) every 20 seconds p._score_training_samples = 10000; // only score on a small sample of the training set -> don't want to spend too // much time scoring (note: there will be at least 1 row per chunk) DeepLearning dl = new DeepLearning(p); DeepLearningModel model = null; try { model = dl.trainModel().get(); } catch (Throwable t) { t.printStackTrace(); throw new RuntimeException(t); } finally { dl.remove(); if (model != null) { model.delete(); } } } else { Log.info("Please run ./gradlew syncBigDataLaptop in the top-level directory of h2o-3."); } } catch (Throwable t) { t.printStackTrace(); throw new RuntimeException(t); } finally { Scope.exit(); } }