Esempio n. 1
0
 public static Matrix plusInplace(Matrix mat, double etat) {
   int nrows = mat.getNumRows();
   int ncols = mat.getNumColumns();
   for (int r = 0; r < nrows; r++) {
     for (int c = 0; c < ncols; c++) {
       mat.setElement(r, c, mat.getElement(r, c) + etat);
     }
   }
   return mat;
 }
Esempio n. 2
0
 public static double colSparcity(Matrix mat) {
   double ncols = mat.getNumColumns();
   double nsparse = 0;
   for (int c = 0; c < ncols; c++) {
     if (mat.getColumn(c).sum() == 0) {
       nsparse++;
     }
   }
   return nsparse / ncols;
 }
Esempio n. 3
0
 public static double absSum(Matrix mat) {
   double tot = 0;
   int nrows = mat.getNumRows();
   int ncols = mat.getNumColumns();
   for (int r = 0; r < nrows; r++) {
     for (int c = 0; c < ncols; c++) {
       tot += Math.abs(mat.getElement(r, c));
     }
   }
   return tot;
 }
Esempio n. 4
0
 public static Matrix abs(Matrix mat) {
   Matrix ret = mat.clone();
   int nrows = ret.getNumRows();
   int ncols = ret.getNumColumns();
   for (int r = 0; r < nrows; r++) {
     for (int c = 0; c < ncols; c++) {
       ret.setElement(r, c, Math.abs(mat.getElement(r, c)));
     }
   }
   return ret;
 }
  @Test
  public void testMatlabFile() throws IOException {
    MatlabFileDataGenerator gen = new MatlabFileDataGenerator(matfile);
    int nusers = -1;
    int nwords = -1;
    int ntasks = -1;
    for (int i = 0; i < gen.size(); i++) {
      Pair<Matrix> XY = gen.generate();
      Matrix X = XY.firstObject();
      Matrix Y = XY.secondObject();

      if (nusers == -1) {
        nusers = X.getNumColumns();
        nwords = X.getNumRows();
        ntasks = Y.getNumColumns();
      } else {
        assertTrue(nusers == X.getNumColumns());
        assertTrue(nwords == X.getNumRows());
        assertTrue(ntasks == Y.getNumColumns());
      }
    }
  }
  /**
   * Creates a new {@code MatrixBasedTermSimilarityNetwork}.
   *
   * @param termIndex The index of terms that contains the nodes of the network.
   * @param similarities The square matrix of similarities between terms. Must have a number of rows
   *     and columns equal to the number of terms in the term index.
   */
  public MatrixBasedTermSimilarityNetwork(final TermIndex termIndex, final Matrix similarities) {
    super();

    if (similarities.getNumRows() != termIndex.getTermCount()
        || similarities.getNumColumns() != termIndex.getTermCount()) {
      throw new DimensionalityMismatchException(
          "the number of terms in the term index must match the "
              + "dimensions of the square similarities matrix");
    }

    this.setTermIndex(termIndex);
    this.setSimilarities(similarities);
  }
Esempio n. 7
0
  public static Vector diag(Matrix mat) {
    Vector ret;

    if (mat.getNumColumns() > mat.getNumRows()) {
      ret = mat.getRow(0);
    } else {
      ret = mat.getColumn(0);
    }
    int rowcol = ret.getDimensionality();
    for (int rc = 0; rc < rowcol; rc++) {
      ret.setElement(rc, mat.getElement(rc, rc));
    }
    return ret;
  }
Esempio n. 8
0
 public static Matrix vstack(MatrixFactory<? extends Matrix> matrixFactory, Matrix... matricies) {
   int nrows = 0;
   int ncols = 0;
   for (Matrix matrix : matricies) {
     nrows += matrix.getNumRows();
     ncols = matrix.getNumColumns();
   }
   Matrix ret = matrixFactory.createMatrix(nrows, ncols);
   int currentRow = 0;
   for (Matrix matrix : matricies) {
     ret.setSubMatrix(currentRow, 0, matrix);
     currentRow += matrix.getNumRows();
   }
   return ret;
 }
  public double sumLoss(
      List<Pair<Matrix>> pairs, Matrix u, Matrix w, Matrix bias, BilinearLearnerParameters params) {
    LossFunction loss = params.getTyped(BilinearLearnerParameters.LOSS);
    loss = new MatLossFunction(loss);
    double total = 0;
    int i = 0;
    int ntasks = 0;
    for (Pair<Matrix> pair : pairs) {
      Matrix X = pair.firstObject();
      Matrix Y = pair.secondObject();
      SparseMatrix Yexp = BilinearSparseOnlineLearner.expandY(Y);
      Matrix expectedAll = u.transpose().times(X.transpose()).times(w);
      loss.setY(Yexp);
      loss.setX(expectedAll);
      if (bias != null) loss.setBias(bias);
      logger.debug("Testing pair: " + i);
      total += loss.eval(null); // Assums an identity w.
      i++;
      ntasks += Y.getNumColumns();
    }
    total /= ntasks;

    return Math.sqrt(total);
  }
Esempio n. 10
0
 // Note this method isn't static, because we want to override to make
 // it parallelized --krdixon
 protected void normalizeTransitionMatrix(Matrix A) {
   final int k = A.getNumColumns();
   for (int j = 0; j < k; j++) {
     normalizeTransitionMatrix(A, j);
   }
 }