/** * Trims the double to the specified number of digits in the number format. * * @param x the number to trim the string representation. * @param numDigits number of digits to limits the string representation to. * @return the string representation of the double limited to the specified number of digits in * the number format. */ public static String trimDouble(double x, int numDigits) { if (defaultNumDigits != numDigits) { MNF.setMaximumFractionDigits(defaultNumDigits = numDigits); MNF.setMinimumFractionDigits(0); MNF.setGroupingUsed(false); } // end if return MNF.format(x); } // end trimDouble
/** * <code>MathUtil</code> is a math utility class. * * @author Dan Dexter * @author Dr. Robert Shelton * @version 1.0 * @since 1.0 */ public class MathUtil { private static final double[] inverseFactorials = { 1.0, 1.0, 0.5, 0.16666666666666666, 0.041666666666666664, 0.008333333333333333, 0.001388888888888889, 1.984126984126984E-4, 2.48015873015873E-5, 2.7557319223985893E-6, 2.755731922398589E-7, 2.505210838544172E-8, 2.08767569878681E-9, 1.6059043836821613E-10, 1.1470745597729725E-11, 7.647163731819816E-13, 4.779477332387385E-14, 2.8114572543455206E-15, 1.5619206968586225E-16, 8.22063524662433E-18 }; private static final int MAX_TERMS = inverseFactorials.length; private static final double[] terms = new double[MAX_TERMS]; private static MdeNumberFormat MNF = MdeNumberFormat.getInstance(); private static int defaultNumDigits = -1; private static final double INV_LOG2 = 1.0 / Math.log(2.0); private static final double INV_LOG10 = 1.0 / Math.log(10.0); /** * Calculates Log base 2 of a given number. * * @param a the number to calculate the Log base 2 of. * @return the Log base 2 of the number <code>a</code> */ public static final double log2(double a) { return INV_LOG2 * Math.log(a); } // end log2 /** * Calculates Log base 10 of a given number. * * @param a the number to calculate the Log base 10 of. * @return the Log base 10 of the number <code>a</code> */ public static final double log10(double a) { return INV_LOG10 * Math.log(a); } // end log10 /** * Calculates Log of a given number for the specified base. * * @param a the number to calculate the Log of. * @param base the base for calculationg the log. * @return the Log of the number for the given <code>base</code> */ public static final double logBaseX(double a, double base) { return Math.log(a) / Math.log(base); } /** * Calculates <code>log( 1 + x )</code>. * * @param x the number to calculate the function over. * @return the value of <code>log( 1 + x )</code>. */ public static double logOnePlusX(double x) { if (Math.abs(x) > 0.1) { return Math.log(1.0 + x); } if (x == 0.0) { return 0.0; } double r = 0.0, t = x; int i, l; for (l = 0; l < MAX_TERMS; l++, t *= (-x)) { if (Math.abs(terms[l] = t / (l + 1)) < 1.0e-16 * Math.abs(x)) { break; } } if (l >= MAX_TERMS) { throw new IllegalStateException("logOnePlusX needed too many terms"); } for (i = l; i >= 0; i--) { r += terms[i]; } return r; } // end logOnePlusX /** * Determines the factor of a number for a given order. * * @param x the number to stump * @param n the order * @return the stump of the number. */ public static double stump(double x, int n) { if (x == 0.0) { return (n <= 0) ? 1.0 : 0.0; } int i, l; double r = 0.0, t = 1.0; if (Math.abs(x) < 0.1) { for (i = 0; i < n; i++, t *= x) { terms[i] = t * inverseFactorials[i]; } for (l = n; l < MAX_TERMS; l++, t *= x) { if (Math.abs(terms[l] = t * inverseFactorials[l]) < 1.0e-16 * Math.abs(terms[n])) { break; } } if (l >= MAX_TERMS) { throw new IllegalArgumentException("Stump index limit exceeded."); } for (i = l; i >= n; i--) { r += terms[i]; } return r; } // end if for (i = 0; i < n; i++, t *= x) { terms[i] = inverseFactorials[i] * t; } for (i = n - 1; i >= 0; i--) { r -= terms[i]; } return r + Math.exp(x); } // end stump /** * Returns a delta floating point number that represents a whole number division of the specified * number. * * @param d the number to find the delta for. * @return a small delta (range) that represents a while number division of the specified number. */ public static final double findDelta(double d) { double z = Math.pow(10.0, Math.ceil(log10(d))); double d_div_7 = d / 7.0; while (d_div_7 < z) { z *= 0.5; if (d_div_7 > z) { return z; } z *= 0.2; } // end for double d_div_15 = d / 15.0; while (d_div_15 > z) { z *= 2.0; } return z; } // end findDelta /** * Trims the double to the specified number of digits in the number format. * * @param x the number to trim the string representation. * @param numDigits number of digits to limits the string representation to. * @return the string representation of the double limited to the specified number of digits in * the number format. */ public static String trimDouble(double x, int numDigits) { if (defaultNumDigits != numDigits) { MNF.setMaximumFractionDigits(defaultNumDigits = numDigits); MNF.setMinimumFractionDigits(0); MNF.setGroupingUsed(false); } // end if return MNF.format(x); } // end trimDouble /** * Returns the equivalent rational string of a number. * * @param x the number. * @param lim the limit. * @return the equivalent rational string, or null if one does not exist. */ public static String getEquivalentRationalString(double x, int lim) { long startTime = MdeSettings.DEBUG ? System.currentTimeMillis() : 0; RationalExpression r = new RationalExpression.ContinuedFraction(x, 20).iterate(); if (MdeSettings.DEBUG) { long endTime = System.currentTimeMillis(); System.out.println( "Call to \"RationalExpression.ContinuedFraction.iterate\" on x = " + x + " took " + (endTime - startTime) + " milliseconds"); } // end if if (r == null) { return null; } double d = r.getDenominator().toExpression().theValue.doubleValue(); double n = r.getNumerator().toExpression().theValue.doubleValue(); if (Math.abs(n) > lim || Math.abs(d) > lim) { return null; } if (d == 1.0) { return "" + (int) n; } return (int) n + "/" + (int) d; } // end getEquivalentRationalString /** * Returns the quadratic representation of a number. * * @param x the number. * @param lim the limit. * @return the quadratic representation of the number. */ public static String getQuadraticRepresentationString(double x, int lim) { Object s = getRationalObject(x, lim); if (s == null) { return null; } if (s instanceof String) { return (String) s; } double[] r = (double[]) s; if (r.length != 3) { return null; } int d = GCD(r); for (int i = 0; i < r.length; i++) { r[i] /= d; } if (Math.abs(r[0]) > lim || Math.abs(r[1]) > lim || Math.abs(r[2]) > lim) { return null; } Roots.RootFactor rf = new Roots.RootFactor(r[2] / r[0], r[1] / r[0]); if (Math.abs(x - rf.rootValues[0]) < Math.abs(x - rf.rootValues[1])) { return prettyPrintQRoot((int) r[0], (int) r[1], (int) r[2], 0, lim); } return prettyPrintQRoot((int) r[0], (int) r[1], (int) r[2], 1, lim); } // end getQuadraticRepresentationString /** * Returns the rational equivalent of a number. * * @param x the number. * @param lim the limit. * @return the rational equivalent of a number. */ public static String getRationalEquivalent(double x, int lim) { String s = getEquivalentRationalString(x, lim); if (s == null) { return "approx. " + trimDouble(x, 4); } return s; } // end getRationalEquivalent /** * A printable version of the Quadratic root. * * @param a the <code>a</code> value of the quadratic. * @param b the <code>b</code> value of the quadratic. * @param c the <code>c</code> value of the quadratic. * @param whichRoot either the <code>0</code> or <code>1</code> root. * @param lim the limit. * @return printable version of the quadratic root, or null if one does not exist. */ public static String prettyPrintQRoot(double a, double b, double c, int whichRoot, int lim) { String[] sign = {" - ", " + "}; if (a == 0.0) { return getEquivalentRationalString(-b / c, lim); } if (b == 0.0) { switch (whichRoot) { case 1: return "sqrt(" + getEquivalentRationalString(-c / a, lim) + ")"; case 0: return "-sqrt(" + getEquivalentRationalString(-c / a, lim) + ")"; default: throw new IllegalArgumentException("whichRoot must bbe 0 or 1"); } // end switch } double h = -0.5 * b / a; double d = h * h - c / a; String hString = getEquivalentRationalString(h, lim); String dString = getEquivalentRationalString(d, lim); if (hString == null || dString == null) { return null; } return hString + sign[whichRoot] + "sqrt(" + dString + ")"; } // end prettyPrintQRoot /** * Returns the greatest common divisor. * * @param c the first integer. * @param d the second integer. * @return the greatest common divisor of the two integer numbers. */ public static int GCD(int c, int d) { int c1 = Math.abs(c); int d1 = Math.abs(d); int big = Math.max(c1, d1); int little = Math.min(c1, d1); if (little == 0) { return big; } return getGCD(big, little); } // end GCD /** * Returns the greatest common divisor of an array of numbers. * * @param r array of numbers. * @return the the greatest common divisor of an array of numbers. */ public static int GCD(double[] r) { int i, n = r.length, z; for (i = 0; i < n; i++) { if (Math.abs(r[i]) > Integer.MAX_VALUE) { return 1; } } switch (n) { case 1: return (int) r[0]; case 0: throw new IllegalArgumentException("Can't find GCD of empty array."); default: z = (int) r[0]; for (i = 1; i < n; i++) { z = GCD(z, (int) r[i]); } return z; } // end switch } // end GCD private static int getGCD(int big, int little) { int r = big % little; if (r == 0) { return little; } return getGCD(little, r); } // end getGCD // // A utility method to translate between ragged arrays and MultiPoints -- // // probably should eventually be private to discourage use of ragged arrays // static MultiPointXY[] raggedToMulti(double[][] r) { // int d, i, j, n = r.length; // MultiPointXY[] m = new MultiPointXY[n]; // // for (i = 0; i < n; i++) { // m[i] = new MultiPointXY(r[i][0]); // m[i].yArray = new double[d = (r[i].length - 1)]; // // for (j = 0; j < d; j++) { // m[i].yArray[j] = r[i][j + 1]; // } // } // end for i // // return m; // } // end raggedToMulti /** * Utility to translate from MultiPoints to a ragged array. * * @param m the multipoint array. * @return the ragged array. */ static double[][] multiToRagged(MultiPointXY[] m) { int d, i, j, n = m.length; double[][] r = new double[n][1]; for (i = 0; i < n; i++) { if (m[i] != null) { if ((d = 1 + m[i].yArray.length) > 1) { r[i] = new double[d]; } r[i][0] = m[i].x; for (j = 1; j < d; j++) { r[i][j] = m[i].yArray[j - 1]; } } } // end for i return r; } // end multiToRagged private static Object getRationalObject(double x, int lim) { if (x == 0) return "0"; double[] r = new RationalExpression.ContinuedFraction(x, 20).getPolynomialCoefficients(); if (r.length != 2) { return r; } if (Math.abs(r[0]) > lim || Math.abs(r[1]) > lim) { return null; } r[1] = -r[1]; if (r[0] < 0) { r[0] = -r[0]; r[1] = -r[1]; } // end if if (r[0] == 1.0) { return "" + (int) r[1]; } return "" + (int) r[1] + "/" + (int) r[0]; } // end getRationalObject // public static void main(String[] args) { // gov.nasa.ial.mde.solver.symbolic.Expression e = // new gov.nasa.ial.mde.solver.symbolic.Expression(MathUtil.combineArgs(args)); // // if (e.theValue == null) // return; // // String s = MathUtil.getQuadraticRepresentationString(e.theValue.doubleValue(), 1000); // // System.out.println("The value = " + s); // } // end main }