public void loadModel(String file) throws Exception { ObjectInputStream in = new ObjectInputStream(new FileInputStream(file)); params.parameters = (double[]) in.readObject(); pipe.dataAlphabet = (Alphabet) in.readObject(); pipe.typeAlphabet = (Alphabet) in.readObject(); in.close(); pipe.closeAlphabets(); }
public void loadModel(String file) throws Exception { ObjectInputStream in = new ObjectInputStream(new FileInputStream(file)); params.parameters = (double[]) in.readObject(); pipe.dataAlphabet = (Alphabet) in.readObject(); pipe.typeAlphabet = (Alphabet) in.readObject(); // afm 06-04-08 if (options.separateLab) { classifier = (Classifier) in.readObject(); } in.close(); pipe.closeAlphabets(); }
private void trainingIter(int[] instanceLengths, String trainfile, File train_forest, int iter) throws IOException { int numUpd = 0; ObjectInputStream in = new ObjectInputStream(new FileInputStream(train_forest)); boolean evaluateI = true; int numInstances = instanceLengths.length; for (int i = 0; i < numInstances; i++) { if ((i + 1) % 500 == 0) { System.out.print((i + 1) + ","); // System.out.println(" "+(i+1)+" instances"); } int length = instanceLengths[i]; // Get production crap. FeatureVector[][][] fvs = new FeatureVector[length][length][2]; double[][][] probs = new double[length][length][2]; FeatureVector[][][][] nt_fvs = new FeatureVector[length][pipe.types.length][2][2]; double[][][][] nt_probs = new double[length][pipe.types.length][2][2]; FeatureVector[][][] fvs_trips = new FeatureVector[length][length][length]; double[][][] probs_trips = new double[length][length][length]; FeatureVector[][][] fvs_sibs = new FeatureVector[length][length][2]; double[][][] probs_sibs = new double[length][length][2]; DependencyInstance inst; if (options.secondOrder) { inst = ((DependencyPipe2O) pipe) .readInstance( in, length, fvs, probs, fvs_trips, probs_trips, fvs_sibs, probs_sibs, nt_fvs, nt_probs, params); } else inst = pipe.readInstance(in, length, fvs, probs, nt_fvs, nt_probs, params); double upd = (double) (options.numIters * numInstances - (numInstances * (iter - 1) + (i + 1)) + 1); int K = options.trainK; Object[][] d = null; if (options.decodeType.equals("proj")) { if (options.secondOrder) d = ((DependencyDecoder2O) decoder) .decodeProjective( inst, fvs, probs, fvs_trips, probs_trips, fvs_sibs, probs_sibs, nt_fvs, nt_probs, K); else d = decoder.decodeProjective(inst, fvs, probs, nt_fvs, nt_probs, K); } if (options.decodeType.equals("non-proj")) { if (options.secondOrder) d = ((DependencyDecoder2O) decoder) .decodeNonProjective( inst, fvs, probs, fvs_trips, probs_trips, fvs_sibs, probs_sibs, nt_fvs, nt_probs, K); else d = decoder.decodeNonProjective(inst, fvs, probs, nt_fvs, nt_probs, K); } params.updateParamsMIRA(inst, d, upd); } // System.out.println(""); // System.out.println(" "+numInstances+" instances"); System.out.print(numInstances); in.close(); }