public Individual[] run( StopCondition cond, FitnessFunction fitness, SelectionAlgorithm[] selector, GenerationAlgorithm generator, ReplaceAlgorithm replacer, int lambda) { int t = 0; double prob[] = new double[selector.length]; for (int i = 0; i < prob.length; i++) { prob[i] = 1 / prob.length; } Individual parents[] = fitness.initialize(lambda); double mini = minimize ? Double.MAX_VALUE : Double.MIN_VALUE; double better = minimize ? Double.MAX_VALUE : Double.MIN_VALUE; for (int i = 0; i < parents.length; i++) { double fit = fitness.fitness(parents[i]); if (minimize) { if (better > fit) { better = fit; } } else { if (better < fit) { better = fit; } } } double previous = better; boolean first = true; boolean second = true; ArrayList<Double> values = new ArrayList<Double>(); ArrayList<Double> minis = new ArrayList<Double>(); ArrayList<Double> maxis = new ArrayList<Double>(); ArrayList<Double> promis = new ArrayList<Double>(); ArrayList<Double> desvis = new ArrayList<Double>(); while (!cond.stop(parents, fitness, t)) { for (int l = 0; l < lambda; l += 2) { Individual[] marriage = new Individual[2]; marriage[0] = parents[StdRandom.uniform(lambda)]; marriage[1] = parents[StdRandom.uniform(lambda)]; marriage = generator.generate(marriage, fitness, minimize); parents[l] = marriage[0]; if (l + 1 < lambda) { parents[l + 1] = marriage[1]; } } double rnd = StdRandom.uniform(0.0, 1.0); double sum = 0.0; SelectionAlgorithm sel = selector[selector.length - 1]; int index = selector.length - 1; for (int i = 0; i < prob.length; i++) { if ((sum += prob[i]) >= rnd) { sel = selector[i]; index = i; break; } } parents = sel.selection(parents, fitness, minimize); double prom = 0.0; better = minimize ? Double.MAX_VALUE : Double.MIN_VALUE; for (int i = 0; i < parents.length; i++) { double fit = fitness.fitness(parents[i]); values.add(fit); prom += fit; if (minimize) { if (better > fit) { better = fit; } } else { if (better < fit) { better = fit; } } } prom /= parents.length; if (prom != mini) { prob[index] += minimize && prom < mini ? (1 - prob[index]) / prob.length : (-1 * prob[index]) / prob.length; for (int i = 0; i < prob.length; i++) { if (i != index) { prob[i] += minimize && prom < mini ? -1 * (1 - prob[index]) / (prob.length * (prob.length - 1)) : (prob[index]) / (prob.length * (prob.length - 1)); } } mini = minimize && prom < mini ? prom : mini; mini = !minimize && prom > mini ? prom : mini; } if (Math.abs(previous - better) < StdRandom.uniform(0.0, 1)) { for (int i = 0; i < parents.length; i++) { double par[] = parents[i].getParameters(); par[Individual.DELTA] += StdRandom.uniform(0.5, fitness.getConstraintMax() * 2); parents[i].setParameters(par); } } else if (Math.abs(previous - better) > StdRandom.uniform(100, 10000)) { for (int i = 0; i < parents.length; i++) { double par[] = parents[i].getParameters(); if (par[Individual.DELTA] > 0) { par[Individual.DELTA] -= StdRandom.uniform(0, par[Individual.DELTA] / 2); } parents[i].setParameters(par); } } previous = better; t++; if (fitness.callsNumber() >= 120000 && first) { first = false; Statistics.run(values, fitness, minimize); } if (fitness.callsNumber() >= 600000 && second) { second = false; Statistics.run(values, fitness, minimize); } double min = Double.MAX_VALUE; double max = Double.MIN_VALUE; double desEst = 0; double prome = 0; for (int i = 0; i < parents.length; i++) { double fit = fitness.fitness(parents[i]); values.add(fit); if (fit < min) { min = fit; } if (fit > max) { max = fit; } prome += fit; } prome /= parents.length; for (int i = 0; i < parents.length; i++) { double fit = fitness.fitness(parents[i]); desEst = (fit - prome) * (fit - prome); } desEst /= parents.length - 1; minis.add(min); maxis.add(max); promis.add(prome); desvis.add(desEst); System.out.println(min); } Statistics.run(values, fitness, minimize); System.out.println("ITER;MIN;MAX;PROM;D.EST"); for (int i = 0; i < minis.size(); i++) { System.out.print((i + 1) + ";"); System.out.print(minis.get(i) + ";"); System.out.print(maxis.get(i) + ";"); System.out.print(promis.get(i) + ";"); System.out.println(desvis.get(i)); } return parents; }
@Override public Individual[] run( StopCondition T, FitnessFunction f, SelectionAlgorithm selector, GenerationAlgorithm generator, ReplaceAlgorithm replacer, int lambda) { int t = 0; Individual[] P = f.initialize(lambda); boolean first = true; boolean second = true; ArrayList<Double> values = new ArrayList<Double>(); ArrayList<Double> minis = new ArrayList<Double>(); ArrayList<Double> maxis = new ArrayList<Double>(); ArrayList<Double> promis = new ArrayList<Double>(); ArrayList<Double> desvis = new ArrayList<Double>(); while (!T.stop(P, f, t)) { Individual Q[] = selector.selection( P, f, minimize); // lambda-individuos, seleccion por ruleta, torneo, ranqueo o USS -> // repetir lambda veces Individual H[] = generator.generate(Q, f, minimize); // generar lambda-individuos: // 1. se hacen parejas // se hace cruce si cumple probabilidad P=0.6 para cada hijo // se hace una mutacion si cumple probabilidad por cada bit P = 1/len(cromosoma) para cada // hijo // se ponen en H P = replacer.replace(P, H); double min = Double.MAX_VALUE; double max = Double.MIN_VALUE; double desEst = 0; double prom = 0; for (int i = 0; i < P.length; i++) { double fit = f.fitness(P[i]); values.add(fit); if (fit < min) { min = fit; } if (fit > max) { max = fit; } prom += fit; } prom /= P.length; for (int i = 0; i < P.length; i++) { double fit = f.fitness(P[i]); desEst = (fit - prom) * (fit - prom); } desEst /= P.length - 1; minis.add(min); maxis.add(max); promis.add(prom); desvis.add(desEst); System.out.println(min); if (f.callsNumber() >= 120000 && first) { first = false; Statistics.run(values, f, minimize); } if (f.callsNumber() >= 600000 && second) { second = false; Statistics.run(values, f, minimize); } t++; } Statistics.run(values, f, minimize); System.out.println("ITER;MIN;MAX;PROM;D.EST"); for (int i = 0; i < minis.size(); i++) { System.out.print((i + 1) + ";"); System.out.print(minis.get(i) + ";"); System.out.print(maxis.get(i) + ";"); System.out.print(promis.get(i) + ";"); System.out.println(desvis.get(i)); } return P; }