/** This function is called periodically during operator control */ public void teleopInit() { ColorImage image; try { image = camera.getImage(); image.write("unedited.jpg"); BinaryImage bImage = image.thresholdRGB(160, 255, 160, 255, 160, 255); bImage.write("whitemask.jpg"); MonoImage mImage = image.getLuminancePlane(); mImage.write("luminancePlane.jpg"); image.free(); bImage.free(); } catch (NIVisionException e) { System.out.println("Error retrieving image: NIVisionException"); e.printStackTrace(); } catch (AxisCameraException e) { System.out.println("Error retrieving image: AxisCameraException"); e.printStackTrace(); } }
public boolean processImage() { boolean debugWriteImages = true; boolean success = cam.freshImage(); if (success) { try { System.out.println("In Try loop"); ColorImage im = cam.getImage(); System.out.println("Got image"); if (debugWriteImages) { im.write("image1.jpg"); System.out.println("Wrote color image"); } BinaryImage thresholdIm = im.thresholdRGB(redLow, redHigh, greenLow, greenHigh, blueLow, blueHigh); if (debugWriteImages) { thresholdIm.write("image2.jpg"); System.err.println("Wrote Threshold Image"); } BinaryImage filteredBoxIm = thresholdIm.particleFilter(boxCriteria); ParticleAnalysisReport[] xparticles = filteredBoxIm.getOrderedParticleAnalysisReports(); System.out.println(xparticles.length + " particles at " + Timer.getFPGATimestamp()); BinaryImage filteredInertiaIm = filteredBoxIm.particleFilter(inertiaCriteria); ParticleAnalysisReport[] particles = filteredInertiaIm.getOrderedParticleAnalysisReports(); System.out.println(particles.length + " particles at " + Timer.getFPGATimestamp()); // Loop through targets, find highest one. // Targets aren't found yet. highTarget = Target.NullTarget; target1 = Target.NullTarget; target2 = Target.NullTarget; target3 = Target.NullTarget; target4 = Target.NullTarget; System.out.println("Targets created"); double minY = IMAGE_HEIGHT; // Minimum y <-> higher in image. for (int i = 0; i < particles.length; i++) { Target t = new Target(i, particles[i]); if (t.ratio > ratioMin && t.ratio < ratioMax) { addTarget(t); if (t.centerY <= minY) { highTarget = t; } } System.out.println( "Target " + i + ": (" + t.centerX + "," + t.centerY + ") Distance: " + getDistance(t)); } System.out.println("Best target: " + highTarget.index); System.out.println("Distance to the target: " + getDistance(highTarget)); if (debugWriteImages) { filteredBoxIm.write("image3.jpg"); filteredInertiaIm.write("image4.jpg"); System.out.println("Wrote Images"); } // Free memory from images. im.free(); thresholdIm.free(); filteredBoxIm.free(); filteredInertiaIm.free(); } catch (AxisCameraException ex) { System.out.println("Axis Camera Exception Gotten" + ex.getMessage()); ex.printStackTrace(); } catch (NIVisionException ex) { System.out.println("NIVision Exception Gotten - " + ex.getMessage()); ex.printStackTrace(); } } return success; }
/** * Analyzes an image taken by the Axis Camera, performing various functions to determine where the * goal is and at what goal the robot is facing * * @param * @return Array of doubles where the first value is the type of goal (2.0 high, 1.0 middle, 0.0 * no goal), the x-centered-normalized value, the y-centered-normalized value and the * distance. If the distance is negative, no goal was found. */ public double[] analyze() { double[] data = new double[3]; // [goal type, x-centered, y-centered, distance] try { ColorImage image = camera.getImage(); // Get image from camera BinaryImage thresholdImage; thresholdImage = image.thresholdHSV(120, 120, 44, 80, 98, 100); // "Look" for objects in this HSV range BinaryImage convexHullImage = thresholdImage.convexHull(false); // Fill in occluded rectangles BinaryImage filteredImage = convexHullImage.particleFilter(collection); // Find filled in rectangles Scores scores[] = new Scores[filteredImage.getNumberParticles()]; for (int i = 0; i < scores.length; i++) { ParticleAnalysisReport report = filteredImage.getParticleAnalysisReport(i); // Get the report for each particle found scores[i] = new Scores(); scores[i].rectangularity = scoreRectangularity(report); scores[i].aspectRatioOuter = scoreAspectRatio(filteredImage, report, i, true); scores[i].aspectRatioInner = scoreAspectRatio(filteredImage, report, i, false); scores[i].xEdge = scoreXEdge(thresholdImage, report); scores[i].yEdge = scoreYEdge(thresholdImage, report); if (scoreCompare(scores[i], false)) { double dist = computeDistance(thresholdImage, report, i, false); System.out.println( "particle: " + i + " is a High Goal centerX: " + report.center_mass_x_normalized + "centerY: " + report.center_mass_y_normalized); System.out.println("Distance: " + dist); data[0] = 2.0; data[1] = report.center_mass_x_normalized; data[2] = report.center_mass_y_normalized; data[3] = dist; } else if (scoreCompare(scores[i], true)) { double dist = computeDistance(thresholdImage, report, i, false); System.out.println( "particle: " + i + " is a Middle Goal centerX: " + report.center_mass_x_normalized + "centerY: " + report.center_mass_y_normalized); System.out.println("Distance: " + dist); data[0] = 1.0; data[1] = report.center_mass_x_normalized; data[2] = report.center_mass_y_normalized; data[3] = dist; } else { System.out.println( "particle: " + i + " is not a goal centerX: " + report.center_mass_x_normalized + "centerY: " + report.center_mass_y_normalized); data[0] = 0.0; data[1] = report.center_mass_x_normalized; data[2] = report.center_mass_y_normalized; data[3] = -1.0; } System.out.println( "rect: " + scores[i].rectangularity + "ARinner: " + scores[i].aspectRatioInner); System.out.println( "ARouter: " + scores[i].aspectRatioOuter + "xEdge: " + scores[i].xEdge + "yEdge: " + scores[i].yEdge); } /* MUST USE FREE FUNCTION: all images are currently allocated in C structures */ filteredImage.free(); convexHullImage.free(); thresholdImage.free(); image.free(); } // end analyze() catch (AxisCameraException e) { data[0] = 0.0; data[1] = 0.0; data[2] = 0.0; data[3] = -1.0; SmartDashboard.putString("ERROR: ", "Camera malfunction!"); } catch (NIVisionException ex) { data[0] = 0.0; data[1] = 0.0; data[2] = 0.0; data[3] = -1.0; SmartDashboard.putString("ERROR: ", "NIVision Exception!"); } return data; }
public DetectedPoint[] getTargetCoordinates(TrackingCriteria criteria) { // Most important bit of this code... final long thisAlgorithmBecomingSkynetCost = 99999999; ColorImage colorImage = null; BinaryImage binaryImage = null; BinaryImage resultImage = null; DetectedPoint[] results = null; try { if (!USE_CAMERA) { colorImage = new RGBImage("inputImage.jpg"); } else { do { colorImage = imageTrackingCamera.getImage(); } while (!imageTrackingCamera.freshImage()); } int hueLow = criteria.getMinimumHue(); int hueHigh = criteria.getMaximumHue(); int saturationLow = criteria.getMinimumSaturation(); int saturationHigh = criteria.getMaximumSaturation(); int valueLow = criteria.getMinimumValue(); int valueHigh = criteria.getMaximumValue(); // Attempt to isolate the colours of the LED ring binaryImage = colorImage.thresholdHSV( hueLow, hueHigh, saturationLow, saturationHigh, valueLow, valueHigh); // Fill in any detected "particles" to make analysis easier // See: // http://zone.ni.com/reference/en-XX/help/372916L-01/nivisionconcepts/advanced_morphology_operations/ binaryImage.convexHull(true); resultImage = binaryImage.removeSmallObjects(true, 3); ParticleAnalysisReport[] reports = resultImage.getOrderedParticleAnalysisReports(); results = new DetectedPoint[reports.length]; int pointIndex = 0; for (int i = 0; i < reports.length; i++) { ParticleAnalysisReport report = reports[i]; int aspectRatio = report.boundingRectWidth / report.boundingRectHeight; double area = report.particleArea; double aspectError = (aspectRatio - criteria.getAspectRatio()) / criteria.getAspectRatio(); double areaError = (area - criteria.getParticleArea()) / criteria.getParticleArea(); aspectError = Math.abs(aspectError); areaError = Math.abs(areaError); if (aspectError < criteria.getAspectTolerance() && areaError < criteria.getAreaTolerance()) { results[pointIndex] = new DetectedPoint(report.center_mass_x_normalized, report.center_mass_y_normalized); pointIndex++; } } log(pointIndex + " point Index, " + results.length + " results.length"); // Remove the empty slots in the array if (pointIndex < results.length) { DetectedPoint[] compressedPoints = new DetectedPoint[pointIndex]; int x = 0; for (int i = 0; i < results.length; i++) { if (results[i] != null) { compressedPoints[x] = results[i]; x++; } } results = compressedPoints; } } catch (AxisCameraException ex) { log("Unable to grab images from the image tracking camera"); ex.printStackTrace(); } catch (NIVisionException ex) { log("Encountered a NIVisionException while trying to acquire coordinates"); ex.printStackTrace(); } finally { try { log("We're actually freeing things!"); // For debugging purposes // colorImage.write("colorImage.jpg"); // binaryImage.write("binaryImage.jpg"); // resultImage.write("resultImage.jpg"); if (colorImage != null) colorImage.free(); if (binaryImage != null) binaryImage.free(); if (resultImage != null) resultImage.free(); colorImage = null; binaryImage = null; resultImage = null; } catch (NIVisionException ex) { // Really? Throw an exception while freeing memory? log("Encountered an exception while freeing memory... Really NI? Really?"); ex.printStackTrace(); } } return results; }
public void autonomous() { try { /** * Do the image capture with the camera and apply the algorithm described above. This sample * will either get images from the camera or from an image file stored in the top level * directory in the flash memory on the cRIO. The file name in this case is "testImage.jpg" */ ColorImage image = cam.getImage(); // comment if using stored images // ColorImage image; // next 2 lines read image from flash on cRIO // image = new RGBImage("/testImage.jpg"); // get the sample image from the cRIO flash BinaryImage thresholdImage = image.thresholdHSV(60, 100, 90, 255, 20, 255); // keep only red objects // thresholdImage.write("/threshold.bmp"); BinaryImage convexHullImage = thresholdImage.convexHull(false); // fill in occluded rectangles // convexHullImage.write("/convexHull.bmp"); BinaryImage filteredImage = convexHullImage.particleFilter(cc); // filter out small particles // filteredImage.write("/filteredImage.bmp"); ParticleAnalysisReport[] par = filteredImage.getOrderedParticleAnalysisReports(); double[] target = new double[] {image.getWidth() / 2.0, image.getHeight()}; double minDist = -1; double[] minMid = new double[0]; // calculate closest rectangle if (par.length == 0) { done = true; return; } for (int i = 0; i < par.length; i++) { ParticleAnalysisReport p = par[i]; double[] mid = new double[] { p.boundingRectLeft + p.boundingRectWidth / 2.0, p.boundingRectTop + p.boundingRectHeight / 2.0 }; double dist = Math.sqrt( (mid[0] - target[0]) * (mid[0] - target[0]) + (mid[1] - target[1]) * (mid[1] - target[1])); if (minDist == -1 || minDist > dist) { minDist = dist; minMid = mid; } } if (minDist != -1) { if (minMid[1] > target[1] + RobotMap.errorMargin) moveDown(); else if (minMid[1] < target[1] - RobotMap.errorMargin) moveUp(); else stopMove(); if (minMid[0] > target[0] + RobotMap.errorMargin) turnRight(); else if (minMid[0] < target[0] - RobotMap.errorMargin) turnLeft(); else turnStop(); if (stopped1 && stopped2) { done = true; return; } } else { done = true; return; } filteredImage.free(); convexHullImage.free(); thresholdImage.free(); image.free(); // } catch (AxisCameraException ex) { // this is needed if the // camera.getImage() is called // ex.printStackTrace(); } catch (NIVisionException ex) { ex.printStackTrace(); } catch (AxisCameraException ace) { ace.printStackTrace(); } }
public TargetScores[] visionAnalyze() { // TargetScores[] tScores_Out;// = new TargetScores[1][]; TargetScores[] tScores = null; try { /** * Do the image capture with the camera and apply the algorithm described above. This sample * will either get images from the camera or from an image file stored in the top level * directory in the flash memory on the cRIO. The file name in this case is "testImage.jpg" */ ColorImage image = camera.getImage(); // comment if using stored images // ColorImage image; // next 2 lines read image from flash on cRIO // image = new RGBImage("/testImage.jpg"); // get the sample image from the cRIO flash BinaryImage thresholdImage = image.thresholdHSV(60, 100, 90, 255, 20, 255); // keep only red objects // thresholdImage.write("/threshold.bmp"); BinaryImage convexHullImage = thresholdImage.convexHull(false); // fill in occluded rectangles // convexHullImage.write("/convexHull.bmp"); BinaryImage filteredImage = convexHullImage.particleFilter(cc); // filter out small particles // filteredImage.write("/filteredImage.bmp"); // iterate through each particle and score to see if it is a target Scores scores[] = new Scores[filteredImage.getNumberParticles()]; tScores = new TargetScores[filteredImage.getNumberParticles()]; for (int i = 0; i < scores.length; i++) { ParticleAnalysisReport report = filteredImage.getParticleAnalysisReport(i); scores[i] = new Scores(); tScores[i] = new TargetScores(); scores[i].rectangularity = scoreRectangularity(report); scores[i].aspectRatioOuter = scoreAspectRatio(filteredImage, report, i, true); scores[i].aspectRatioInner = scoreAspectRatio(filteredImage, report, i, false); scores[i].xEdge = scoreXEdge(thresholdImage, report); scores[i].yEdge = scoreYEdge(thresholdImage, report); if (scoreCompare(scores[i], false)) { tScores[i].goal = TargetScores.high; } else if (scoreCompare(scores[i], true)) { tScores[i].goal = TargetScores.med; } tScores[i].yVal = report.center_mass_y; tScores[i].xVal = report.center_mass_x; tScores[i].yValAim = axisToAim('y', tScores[i].yVal); /* if(scoreCompare(scores[i], false)) { System.out.println("particle: " + i + "is a High Goal centerX: " + report.center_mass_x_normalized + "centerY: " + report.center_mass_y_normalized); System.out.println("Distance: " + computeDistance(thresholdImage, report, i, false)); } else if (scoreCompare(scores[i], true)) { System.out.println("particle: " + i + "is a Middle Goal centerX: " + report.center_mass_x_normalized + "centerY: " + report.center_mass_y_normalized); System.out.println("Distance: " + computeDistance(thresholdImage, report, i, true)); } else { System.out.println("particle: " + i + "is not a goal centerX: " + report.center_mass_x_normalized + "centerY: " + report.center_mass_y_normalized); } System.out.println("rect: " + scores[i].rectangularity + "ARinner: " + scores[i].aspectRatioInner); System.out.println("ARouter: " + scores[i].aspectRatioOuter + "xEdge: " + scores[i].xEdge + "yEdge: " + scores[i].yEdge); */ } /** * all images in Java must be freed after they are used since they are allocated out of C data * structures. Not calling free() will cause the memory to accumulate over each pass of this * loop. */ filteredImage.free(); convexHullImage.free(); thresholdImage.free(); image.free(); // tScores_Out = new TargetScores[tScores.length]; // tScores_Out = (TargetScores[])tScores.clone(); // myScores = scores; } catch (AxisCameraException ex) { // this is needed if the camera.getImage() is called ex.printStackTrace(); } catch (NIVisionException ex) { ex.printStackTrace(); } if (tScores == null) { tScores = new TargetScores[1]; tScores[1] = new NoScores(); } return tScores; // tScores_Out; }