public static Graph erdosRenyiGraph(int n, int e) { List<Node> nodes = new ArrayList<Node>(); for (int i = 0; i < n; i++) nodes.add(new GraphNode("X" + i)); Graph graph = new EdgeListGraph(nodes); for (int e0 = 0; e0 < e; e0++) { int i1 = RandomUtil.getInstance().nextInt(n); int i2 = RandomUtil.getInstance().nextInt(n); if (i1 == i2) { e0--; continue; } Edge edge = Edges.undirectedEdge(nodes.get(i1), nodes.get(i2)); if (graph.containsEdge(edge)) { e0--; continue; } graph.addEdge(edge); } return graph; }
// ===========================SCORING METHODS===================// public double scoreDag(Graph graph) { Graph dag = new EdgeListGraphSingleConnections(graph); buildIndexing(graph); double score = 0.0; for (Node y : dag.getNodes()) { Set<Node> parents = new HashSet<Node>(dag.getParents(y)); int nextIndex = -1; for (int i = 0; i < getVariables().size(); i++) { nextIndex = hashIndices.get(variables.get(i)); } int parentIndices[] = new int[parents.size()]; Iterator<Node> pi = parents.iterator(); int count = 0; while (pi.hasNext()) { Node nextParent = pi.next(); parentIndices[count++] = hashIndices.get(nextParent); } if (this.isDiscrete()) { score += localDiscreteScore(nextIndex, parentIndices); } else { score += localSemScore(nextIndex, parentIndices); } } return score; }
private boolean existsUnblockedSemiDirectedPath(Node from, Node to, List<Node> cond, Graph G) { Queue<Node> Q = new LinkedList<Node>(); Set<Node> V = new HashSet<Node>(); Q.offer(from); V.add(from); while (!Q.isEmpty()) { Node t = Q.remove(); if (t == to) return true; for (Node u : G.getAdjacentNodes(t)) { Edge edge = G.getEdge(t, u); Node c = Edges.traverseSemiDirected(t, edge); if (c == null) continue; if (cond.contains(c)) continue; if (c == to) return true; if (!V.contains(c)) { V.add(c); Q.offer(c); } } } return false; }
private Graph changeLatentNames(Graph full, Clusters measurements, List<String> latentVarList) { Graph g2 = null; try { g2 = (Graph) new MarshalledObject(full).get(); } catch (IOException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } for (int i = 0; i < measurements.getNumClusters(); i++) { List<String> d = measurements.getCluster(i); String latentName = latentVarList.get(i); for (Node node : full.getNodes()) { if (!(node.getNodeType() == NodeType.LATENT)) { continue; } List<Node> _children = full.getChildren(node); _children.removeAll(ReidentifyVariables.getLatents(full)); List<String> childNames = getNames(_children); if (new HashSet<String>(childNames).equals(new HashSet<String>(d))) { g2.getNode(node.getName()).setName(latentName); } } } return g2; }
private void calcStats() { // Graph resultGraph = getAlgorithmRunner().getResultGraph(); IGesRunner runner = (IGesRunner) getAlgorithmRunner(); if (runner.getTopGraphs().isEmpty()) { throw new IllegalArgumentException( "No patterns were recorded. Please adjust the number of " + "patterns to store."); } Graph resultGraph = runner.getTopGraphs().get(runner.getIndex()).getGraph(); if (getAlgorithmRunner().getDataModel() instanceof DataSet) { // resultGraph may be the output of a PC search. // Such graphs sometimes contain doubly directed edges. // /We converte such edges to directed edges here. // For the time being an orientation is arbitrarily selected. Set<Edge> allEdges = resultGraph.getEdges(); for (Edge edge : allEdges) { if (edge.getEndpoint1() == Endpoint.ARROW && edge.getEndpoint2() == Endpoint.ARROW) { // Option 1 orient it from node1 to node2 resultGraph.setEndpoint(edge.getNode1(), edge.getNode2(), Endpoint.ARROW); // Option 2 remove such edges: resultGraph.removeEdge(edge); } } Pattern pattern = new Pattern(resultGraph); PatternToDag ptd = new PatternToDag(pattern); Graph dag = ptd.patternToDagMeekRules(); DataSet dataSet = (DataSet) getAlgorithmRunner().getDataModel(); String report; if (dataSet.isContinuous()) { report = reportIfContinuous(dag, dataSet); } else if (dataSet.isDiscrete()) { report = reportIfDiscrete(dag, dataSet); } else { throw new IllegalArgumentException(""); } JScrollPane dagWorkbenchScroll = dagWorkbenchScroll(dag); modelStatsText.setLineWrap(true); modelStatsText.setWrapStyleWord(true); modelStatsText.setText(report); removeStatsTabs(); tabbedPane.addTab("DAG in pattern", dagWorkbenchScroll); tabbedPane.addTab("DAG Model Statistics", modelStatsText); } }
private Graph structure(Graph mim) { List<Node> latents = new ArrayList<Node>(); for (Node node : mim.getNodes()) { if (node.getNodeType() == NodeType.LATENT) { latents.add(node); } } return mim.subgraph(latents); }
private Graph restrictToEmpiricalLatents(Graph mimStructure, Graph mimbuildStructure) { Graph _mim = new EdgeListGraph(mimStructure); for (Node node : mimbuildStructure.getNodes()) { if (!mimbuildStructure.containsNode(node)) { _mim.removeNode(node); } } return _mim; }
private boolean dConnected(Graph graph, String x, String y, String... z) { Node _x = graph.getNode(x); Node _y = graph.getNode(y); List<Node> _z = new ArrayList<Node>(); for (String name : z) { _z.add(graph.getNode(name)); } return graph.isDConnectedTo(_x, _y, _z); }
// Cannot be done if the graph changes. public void setInitialGraph(Graph initialGraph) { initialGraph = GraphUtils.replaceNodes(initialGraph, variables); out.println("Initial graph variables: " + initialGraph.getNodes()); out.println("Data set variables: " + variables); if (!new HashSet<Node>(initialGraph.getNodes()).equals(new HashSet<Node>(variables))) { throw new IllegalArgumentException("Variables aren't the same."); } this.initialGraph = initialGraph; }
private static int shortestPath(Node n1, Node n2, Graph g) { Queue<Node> Q = new ArrayDeque<Node>(); Map<Node, Node> V = new HashMap<Node, Node>(); Q.offer(n1); V.put(n1, null); while (!Q.isEmpty()) { Node m = Q.poll(); if (V.containsKey(n2)) break; for (Node p : g.getAdjacentNodes(m)) { if (V.containsKey(p)) continue; Q.offer(p); V.put(p, m); } } int s = 0; do { s++; n2 = V.get(n2); } while (n2 != null); return s; }
private static int weight(List<Node> nodes, Graph graph, int total, int b) { double p = 1; int degree = graph.getNumEdges(nodes.get(b)); int t = degree + 1; total += pow((double) t, p); return total; }
public void testAlternativeGraphs() { // UniformGraphGenerator gen = new UniformGraphGenerator(UniformGraphGenerator.ANY_DAG); // gen.setNumNodes(100); // gen.setMaxEdges(200); // gen.setMaxDegree(30); // gen.setMaxInDegree(30); // gen.setMaxOutDegree(30); //// gen.setNumIterations(3000000); // gen.setResamplingDegree(10); // // gen.generate(); // // Graph graph = gen.getDag(); Graph graph = weightedRandomGraph(250, 400); List<Integer> degreeCounts = new ArrayList<Integer>(); Map<Integer, Integer> degreeCount = new HashMap<Integer, Integer>(); for (Node node : graph.getNodes()) { int degree = graph.getNumEdges(node); degreeCounts.add(degree); if (degreeCount.get(degree) == null) { degreeCount.put(degree, 0); } degreeCount.put(degree, degreeCount.get(degree) + 1); } Collections.sort(degreeCounts); System.out.println(degreeCounts); List<Integer> _degrees = new ArrayList<Integer>(degreeCount.keySet()); Collections.sort(_degrees); for (int i : _degrees) { int j = degreeCount.get(i); // System.out.println(i + " " + j); System.out.println(log(i + 1) + " " + log(j)); } System.out.println("\nCPL = " + characteristicPathLength(graph)); Graph erGraph = erdosRenyiGraph(200, 200); System.out.println("\n ER CPL = " + characteristicPathLength(erGraph)); }
/** * Forward equivalence search. * * @param graph The graph in the state prior to the forward equivalence search. */ private void fes(Graph graph, List<Node> nodes) { TetradLogger.getInstance().log("info", "** FORWARD EQUIVALENCE SEARCH"); lookupArrows = new HashMap<OrderedPair, Set<Arrow>>(); initializeArrowsForward(nodes); while (!sortedArrows.isEmpty()) { Arrow arrow = sortedArrows.first(); sortedArrows.remove(arrow); Node x = arrow.getX(); Node y = arrow.getY(); clearArrow(x, y); if (graph.isAdjacentTo(x, y)) { continue; } if (!validInsert(x, y, arrow.getHOrT(), arrow.getNaYX(), graph)) { continue; } List<Node> t = arrow.getHOrT(); double bump = arrow.getBump(); Set<Edge> edges = graph.getEdges(); insert(x, y, t, graph, bump); score += bump; rebuildPattern(graph); // Try to avoid duplicating scoring calls. First clear out all of the edges that need to be // changed, // then change them, checking to see if they're already been changed. I know, roundabout, but // there's // a performance boost. for (Edge edge : graph.getEdges()) { if (!edges.contains(edge)) { reevaluateForward(graph, nodes, edge.getNode1(), edge.getNode2()); } } storeGraph(graph); } }
/** Evaluate the Insert(X, Y, T) operator (Definition 12 from Chickering, 2002). */ private double insertEval(Node x, Node y, List<Node> t, List<Node> naYX, Graph graph) { Set<Node> set1 = new HashSet<Node>(naYX); set1.addAll(t); List<Node> paY = graph.getParents(y); set1.addAll(paY); Set<Node> set2 = new HashSet<Node>(set1); set1.add(x); return scoreGraphChange(y, set1, set2); }
/** Returns true iif the given set forms a clique in the given graph. */ private static boolean isClique(List<Node> nodes, Graph graph) { for (int i = 0; i < nodes.size() - 1; i++) { for (int j = i + 1; j < nodes.size(); j++) { if (!graph.isAdjacentTo(nodes.get(i), nodes.get(j))) { return false; } } } return true; }
/** Get all nodes that are connected to Y by an undirected edge and not adjacent to X. */ private static List<Node> getTNeighbors(Node x, Node y, Graph graph) { List<Edge> yEdges = graph.getEdges(y); List<Node> tNeighbors = new ArrayList<Node>(); for (Edge edge : yEdges) { if (!Edges.isUndirectedEdge(edge)) { continue; } Node z = edge.getDistalNode(y); if (graph.isAdjacentTo(z, x)) { continue; } tNeighbors.add(z); } return tNeighbors; }
/** * Find all nodes that are connected to Y by an undirected edge that are adjacent to X (that is, * by undirected or directed edge). */ private static List<Node> getNaYX(Node x, Node y, Graph graph) { List<Edge> yEdges = graph.getEdges(y); List<Node> nayx = new ArrayList<Node>(); for (Edge edge : yEdges) { if (!Edges.isUndirectedEdge(edge)) { continue; } Node z = edge.getDistalNode(y); if (!graph.isAdjacentTo(z, x)) { continue; } nayx.add(z); } return nayx; }
public static Graph weightedRandomGraph(int n, int e) { List<Node> nodes = new ArrayList<Node>(); for (int i = 0; i < n; i++) nodes.add(new GraphNode("X" + i)); Graph graph = new EdgeListGraph(nodes); for (int e0 = 0; e0 < e; e0++) { int i1 = weightedRandom(nodes, graph); // int i2 = RandomUtil.getInstance().nextInt(n); int i2 = weightedRandom(nodes, graph); if (!(shortestPath(nodes.get(i1), nodes.get(i2), graph) < 9)) { e0--; continue; } if (i1 == i2) { e0--; continue; } Edge edge = Edges.undirectedEdge(nodes.get(i1), nodes.get(i2)); if (graph.containsEdge(edge)) { e0--; continue; } graph.addEdge(edge); } for (Edge edge : graph.getEdges()) { Node n1 = edge.getNode1(); Node n2 = edge.getNode2(); if (!graph.isAncestorOf(n2, n1)) { graph.removeEdge(edge); graph.addDirectedEdge(n1, n2); } else { graph.removeEdge(edge); graph.addDirectedEdge(n2, n1); } } return graph; }
private Graph condense(Graph mimStructure, Graph mimbuildStructure) { // System.out.println("Uncondensed: " + mimbuildStructure); Map<Node, Node> substitutions = new HashMap<Node, Node>(); for (Node node : mimbuildStructure.getNodes()) { for (Node _node : mimStructure.getNodes()) { if (node.getName().startsWith(_node.getName())) { substitutions.put(node, _node); break; } substitutions.put(node, node); } } HashSet<Node> nodes = new HashSet<Node>(substitutions.values()); Graph graph = new EdgeListGraph(new ArrayList<Node>(nodes)); for (Edge edge : mimbuildStructure.getEdges()) { Node node1 = substitutions.get(edge.getNode1()); Node node2 = substitutions.get(edge.getNode2()); if (node1 == node2) continue; if (graph.isAdjacentTo(node1, node2)) continue; graph.addEdge(new Edge(node1, node2, edge.getEndpoint1(), edge.getEndpoint2())); } // System.out.println("Condensed: " + graph); return graph; }
private Graph pickDag(Graph graph) { SearchGraphUtils.basicPattern(graph, false); addRequiredEdges(graph); boolean containsUndirected; do { containsUndirected = false; for (Edge edge : graph.getEdges()) { if (Edges.isUndirectedEdge(edge)) { containsUndirected = true; graph.removeEdge(edge); Edge _edge = Edges.directedEdge(edge.getNode1(), edge.getNode2()); graph.addEdge(_edge); } } meekOrient(graph, getKnowledge()); } while (containsUndirected); return graph; }
/** * Greedy equivalence search: Start from the empty graph, add edges till model is significant. * Then start deleting edges till a minimum is achieved. * * @return the resulting Pattern. */ public Graph search() { Graph graph; if (initialGraph == null) { graph = new EdgeListGraphSingleConnections(getVariables()); } else { graph = new EdgeListGraphSingleConnections(initialGraph); } fireGraphChange(graph); buildIndexing(graph); addRequiredEdges(graph); topGraphs.clear(); storeGraph(graph); List<Node> nodes = graph.getNodes(); long start = System.currentTimeMillis(); score = 0.0; // Do forward search. fes(graph, nodes); // Do backward search. bes(graph); long endTime = System.currentTimeMillis(); this.elapsedTime = endTime - start; this.logger.log("graph", "\nReturning this graph: " + graph); this.logger.log("info", "Elapsed time = " + (elapsedTime) / 1000. + " s"); this.logger.flush(); return graph; }
private static double characteristicPathLength(Graph g) { List<Node> nodes = g.getNodes(); int total = 0; int count = 0; for (int i = 0; i < nodes.size(); i++) { for (int j = i; j < nodes.size(); j++) { int shortest = shortestPath(nodes.get(i), nodes.get(j), g); total += shortest; count++; } } return total / (double) count; }
// Can be done concurrently. private double deleteEval(Node x, Node y, List<Node> h, List<Node> naYX, Graph graph) { List<Node> paY = graph.getParents(y); Set<Node> paYMinuxX = new HashSet<Node>(paY); paYMinuxX.remove(x); Set<Node> set1 = new HashSet<Node>(naYX); set1.removeAll(h); set1.addAll(paYMinuxX); Set<Node> set2 = new HashSet<Node>(naYX); set2.removeAll(h); set2.addAll(paY); return scoreGraphChange(y, set1, set2); }
// Invalid if then nodes or graph changes. private void calculateArrowsBackward(Node x, Node y, Graph graph) { if (x == y) { return; } if (!graph.isAdjacentTo(x, y)) { return; } if (!knowledgeEmpty()) { if (!getKnowledge().noEdgeRequired(x.getName(), y.getName())) { return; } } List<Node> naYX = getNaYX(x, y, graph); clearArrow(x, y); List<Node> _naYX = new ArrayList<Node>(naYX); DepthChoiceGenerator gen = new DepthChoiceGenerator(_naYX.size(), _naYX.size()); int[] choice; while ((choice = gen.next()) != null) { List<Node> H = GraphUtils.asList(choice, _naYX); if (!knowledgeEmpty()) { if (!validSetByKnowledge(y, H)) { continue; } } double bump = deleteEval(x, y, H, naYX, graph); if (bump > 0.0) { Arrow arrow = new Arrow(bump, x, y, H, naYX); sortedArrows.add(arrow); addLookupArrow(x, y, arrow); } } }
private void initializeArrowsBackward(Graph graph) { sortedArrows.clear(); lookupArrows.clear(); for (Edge edge : graph.getEdges()) { Node x = edge.getNode1(); Node y = edge.getNode2(); if (!knowledgeEmpty()) { if (!getKnowledge().noEdgeRequired(x.getName(), y.getName())) { continue; } } if (Edges.isDirectedEdge(edge)) { calculateArrowsBackward(x, y, graph); } else { calculateArrowsBackward(x, y, graph); calculateArrowsBackward(y, x, graph); } } }
// Trying to trip up the breadth first algorithm. public void testDSeparation3() { Graph graph = GraphConverter.convert("x-->s1,x-->s2,s1-->s3,s3-->s2,s3<--y"); assertTrue( graph.isDSeparatedFrom(graph.getNode("x"), graph.getNode("y"), new ArrayList<Node>())); graph = GraphConverter.convert("1-->2,2<--4,2-->7,2-->3"); assertTrue( graph.isDSeparatedFrom(graph.getNode("4"), graph.getNode("1"), new ArrayList<Node>())); graph = GraphConverter.convert("X1-->X5,X1-->X6,X2-->X3,X4-->X6,X5-->X3,X6-->X5,X7-->X3"); assertTrue(dConnected(graph, "X2", "X4", "X3", "X6")); graph = GraphConverter.convert("X1<--X2,X1<--X3,X2-->X3,X3<--X4"); assertTrue(dConnected(graph, "X1", "X4", "X3")); graph = GraphConverter.convert("X2-->X7,X3-->X2,X5-->X1,X5-->X2,X6-->X1,X7-->X6,X2->X4"); assertTrue(dConnected(graph, "X1", "X3")); graph = GraphConverter.convert("1-->3,1-->4,2-->5,4-->5,4-->7,6-->5,7-->3"); assertTrue(dConnected(graph, "1", "4")); }
public void rtest3() { Node x = new GraphNode("X"); Node y = new GraphNode("Y"); Node z = new GraphNode("Z"); Node w = new GraphNode("W"); List<Node> nodes = new ArrayList<Node>(); nodes.add(x); nodes.add(y); nodes.add(z); nodes.add(w); Graph g = new EdgeListGraph(nodes); g.addDirectedEdge(x, y); g.addDirectedEdge(x, z); g.addDirectedEdge(y, w); g.addDirectedEdge(z, w); Graph maxGraph = null; double maxPValue = -1.0; ICovarianceMatrix maxLatentCov = null; Graph mim = DataGraphUtils.randomMim(g, 8, 0, 0, 0, true); // Graph mim = DataGraphUtils.randomSingleFactorModel(5, 5, 8, 0, 0, 0); Graph mimStructure = structure(mim); SemPm pm = new SemPm(mim); System.out.println("\n\nTrue graph:"); System.out.println(mimStructure); SemImInitializationParams params = new SemImInitializationParams(); params.setCoefRange(0.5, 1.5); SemIm im = new SemIm(pm, params); int N = 1000; DataSet data = im.simulateData(N, false); CovarianceMatrix cov = new CovarianceMatrix(data); for (int i = 0; i < 1; i++) { ICovarianceMatrix _cov = DataUtils.reorderColumns(cov); List<List<Node>> partition; FindOneFactorClusters fofc = new FindOneFactorClusters(_cov, TestType.TETRAD_WISHART, .001); fofc.search(); partition = fofc.getClusters(); System.out.println(partition); List<String> latentVarList = reidentifyVariables(mim, data, partition, 2); Mimbuild2 mimbuild = new Mimbuild2(); mimbuild.setAlpha(0.001); // mimbuild.setMinimumSize(5); // To test knowledge. // Knowledge knowledge = new Knowledge2(); // knowledge.setEdgeForbidden("L.Y", "L.W", true); // knowledge.setEdgeRequired("L.Y", "L.Z", true); // mimbuild.setKnowledge(knowledge); Graph mimbuildStructure = mimbuild.search(partition, latentVarList, _cov); double pValue = mimbuild.getpValue(); System.out.println(mimbuildStructure); System.out.println("P = " + pValue); System.out.println("Latent Cov = " + mimbuild.getLatentsCov()); if (pValue > maxPValue) { maxPValue = pValue; maxGraph = new EdgeListGraph(mimbuildStructure); maxLatentCov = mimbuild.getLatentsCov(); } } System.out.println("\n\nTrue graph:"); System.out.println(mimStructure); System.out.println("\nBest graph:"); System.out.println(maxGraph); System.out.println("P = " + maxPValue); System.out.println("Latent Cov = " + maxLatentCov); System.out.println(); }
private void addRequiredEdges(Graph graph) { if (true) return; if (knowledgeEmpty()) return; for (Iterator<KnowledgeEdge> it = getKnowledge().requiredEdgesIterator(); it.hasNext(); ) { KnowledgeEdge next = it.next(); Node nodeA = graph.getNode(next.getFrom()); Node nodeB = graph.getNode(next.getTo()); if (!graph.isAncestorOf(nodeB, nodeA)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeA, nodeB); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeA, nodeB)); } } for (Edge edge : graph.getEdges()) { final String A = edge.getNode1().getName(); final String B = edge.getNode2().getName(); if (knowledge.isForbidden(A, B)) { Node nodeA = edge.getNode1(); Node nodeB = edge.getNode2(); if (nodeA != null && nodeB != null && graph.isAdjacentTo(nodeA, nodeB) && !graph.isChildOf(nodeA, nodeB)) { if (!graph.isAncestorOf(nodeA, nodeB)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeB, nodeA); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeB, nodeA)); } } if (!graph.isChildOf(nodeA, nodeB) && getKnowledge().isForbidden(nodeA.getName(), nodeB.getName())) { if (!graph.isAncestorOf(nodeA, nodeB)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeB, nodeA); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeB, nodeA)); } } } else if (knowledge.isForbidden(B, A)) { Node nodeA = edge.getNode2(); Node nodeB = edge.getNode1(); if (nodeA != null && nodeB != null && graph.isAdjacentTo(nodeA, nodeB) && !graph.isChildOf(nodeA, nodeB)) { if (!graph.isAncestorOf(nodeA, nodeB)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeB, nodeA); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeB, nodeA)); } } if (!graph.isChildOf(nodeA, nodeB) && getKnowledge().isForbidden(nodeA.getName(), nodeB.getName())) { if (!graph.isAncestorOf(nodeA, nodeB)) { graph.removeEdges(nodeA, nodeB); graph.addDirectedEdge(nodeB, nodeA); TetradLogger.getInstance() .log("insertedEdges", "Adding edge by knowledge: " + graph.getEdge(nodeB, nodeA)); } } } } }
/** Do an actual deletion (Definition 13 from Chickering, 2002). */ private void delete(Node x, Node y, List<Node> subset, Graph graph, double bump) { Edge trueEdge = null; if (trueGraph != null) { Node _x = trueGraph.getNode(x.getName()); Node _y = trueGraph.getNode(y.getName()); trueEdge = trueGraph.getEdge(_x, _y); } if (log && verbose) { Edge oldEdge = graph.getEdge(x, y); String label = trueGraph != null && trueEdge != null ? "*" : ""; TetradLogger.getInstance() .log( "deletedEdges", (graph.getNumEdges() - 1) + ". DELETE " + oldEdge + " " + subset + " (" + bump + ") " + label); out.println( (graph.getNumEdges() - 1) + ". DELETE " + oldEdge + " " + subset + " (" + bump + ") " + label); } else { int numEdges = graph.getNumEdges() - 1; if (numEdges % 50 == 0) out.println(numEdges); } graph.removeEdge(x, y); for (Node h : subset) { Edge oldEdge = graph.getEdge(y, h); graph.removeEdge(y, h); graph.addDirectedEdge(y, h); if (log) { TetradLogger.getInstance() .log("directedEdges", "--- Directing " + oldEdge + " to " + graph.getEdge(y, h)); } if (verbose) { out.println("--- Directing " + oldEdge + " to " + graph.getEdge(y, h)); } if (Edges.isUndirectedEdge(graph.getEdge(x, h))) { if (!graph.isAdjacentTo(x, h)) throw new IllegalArgumentException("Not adjacent: " + x + ", " + h); oldEdge = graph.getEdge(x, h); graph.removeEdge(x, h); graph.addDirectedEdge(x, h); if (log) { TetradLogger.getInstance() .log("directedEdges", "--- Directing " + oldEdge + " to " + graph.getEdge(x, h)); } if (verbose) { out.println("--- Directing " + oldEdge + " to " + graph.getEdge(x, h)); } } } }
// serial. private void insert(Node x, Node y, List<Node> t, Graph graph, double bump) { if (graph.isAdjacentTo(x, y)) { return; // The initial graph may already have put this edge in the graph. // throw new IllegalArgumentException(x + " and " + y + " are already adjacent in // the graph."); } Edge trueEdge = null; if (trueGraph != null) { Node _x = trueGraph.getNode(x.getName()); Node _y = trueGraph.getNode(y.getName()); trueEdge = trueGraph.getEdge(_x, _y); } graph.addDirectedEdge(x, y); if (log) { String label = trueGraph != null && trueEdge != null ? "*" : ""; TetradLogger.getInstance() .log( "insertedEdges", graph.getNumEdges() + ". INSERT " + graph.getEdge(x, y) + " " + t + " " + bump + " " + label); } else { int numEdges = graph.getNumEdges() - 1; if (verbose) { if (numEdges % 50 == 0) out.println(numEdges); } } if (verbose) { String label = trueGraph != null && trueEdge != null ? "*" : ""; out.println( graph.getNumEdges() + ". INSERT " + graph.getEdge(x, y) + " " + t + " " + bump + " " + label); } else { int numEdges = graph.getNumEdges() - 1; if (verbose) { if (numEdges % 50 == 0) out.println(numEdges); } } for (Node _t : t) { Edge oldEdge = graph.getEdge(_t, y); if (oldEdge == null) throw new IllegalArgumentException("Not adjacent: " + _t + ", " + y); graph.removeEdge(_t, y); graph.addDirectedEdge(_t, y); if (log && verbose) { TetradLogger.getInstance() .log("directedEdges", "--- Directing " + oldEdge + " to " + graph.getEdge(_t, y)); out.println("--- Directing " + oldEdge + " to " + graph.getEdge(_t, y)); } } }