private Graph changeLatentNames(Graph full, Clusters measurements, List<String> latentVarList) { Graph g2 = null; try { g2 = (Graph) new MarshalledObject(full).get(); } catch (IOException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } for (int i = 0; i < measurements.getNumClusters(); i++) { List<String> d = measurements.getCluster(i); String latentName = latentVarList.get(i); for (Node node : full.getNodes()) { if (!(node.getNodeType() == NodeType.LATENT)) { continue; } List<Node> _children = full.getChildren(node); _children.removeAll(ReidentifyVariables.getLatents(full)); List<String> childNames = getNames(_children); if (new HashSet<String>(childNames).equals(new HashSet<String>(d))) { g2.getNode(node.getName()).setName(latentName); } } } return g2; }
private void calculateArrowsForward(Node x, Node y, Graph graph) { clearArrow(x, y); if (!knowledgeEmpty()) { if (getKnowledge().isForbidden(x.getName(), y.getName())) { return; } } List<Node> naYX = getNaYX(x, y, graph); List<Node> t = getTNeighbors(x, y, graph); DepthChoiceGenerator gen = new DepthChoiceGenerator(t.size(), t.size()); int[] choice; while ((choice = gen.next()) != null) { List<Node> s = GraphUtils.asList(choice, t); if (!knowledgeEmpty()) { if (!validSetByKnowledge(y, s)) { continue; } } double bump = insertEval(x, y, s, naYX, graph); if (bump > 0.0) { Arrow arrow = new Arrow(bump, x, y, s, naYX); sortedArrows.add(arrow); addLookupArrow(x, y, arrow); } } }
private List<String> getNames(List<Node> nodes) { List<String> names = new ArrayList<String>(); for (Node node : nodes) { names.add(node.getName()); } return names; }
private String clusterSizes(List<List<Node>> partition, List<List<Node>> trueClusters) { String s = ""; FOR: for (int i = 0; i < partition.size(); i++) { List<Node> cluster = partition.get(i); s += cluster.size(); for (List<Node> trueCluster : trueClusters) { if (trueCluster.containsAll(cluster)) { // Collections.sort(trueCluster); // Collections.sort(cluster); // System.out.println(trueCluster + " " + cluster); s += "p"; if (i < partition.size() - 1) { s += ","; } continue FOR; } } if (i < partition.size() - 1) { s += ","; } } return s; }
private List<String> measuredNames(Graph graph) { List<String> names = new ArrayList<>(); for (Node node : graph.getNodes()) { if (node.getNodeType() == NodeType.MEASURED) { names.add(node.getName()); } } return names; }
private int numClustered(List<List<Node>> partition) { int sum = 0; for (int i = 0; i < partition.size(); i++) { List<Node> cluster = partition.get(i); sum += cluster.size(); } return sum; }
/** Returns true iif the given set forms a clique in the given graph. */ private static boolean isClique(List<Node> nodes, Graph graph) { for (int i = 0; i < nodes.size() - 1; i++) { for (int j = i + 1; j < nodes.size(); j++) { if (!graph.isAdjacentTo(nodes.get(i), nodes.get(j))) { return false; } } } return true; }
private Graph structure(Graph mim) { List<Node> latents = new ArrayList<Node>(); for (Node node : mim.getNodes()) { if (node.getNodeType() == NodeType.LATENT) { latents.add(node); } } return mim.subgraph(latents); }
// ===========================SCORING METHODS===================// public double scoreDag(Graph graph) { Graph dag = new EdgeListGraphSingleConnections(graph); buildIndexing(graph); double score = 0.0; for (Node y : dag.getNodes()) { Set<Node> parents = new HashSet<Node>(dag.getParents(y)); int nextIndex = -1; for (int i = 0; i < getVariables().size(); i++) { nextIndex = hashIndices.get(variables.get(i)); } int parentIndices[] = new int[parents.size()]; Iterator<Node> pi = parents.iterator(); int count = 0; while (pi.hasNext()) { Node nextParent = pi.next(); parentIndices[count++] = hashIndices.get(nextParent); } if (this.isDiscrete()) { score += localDiscreteScore(nextIndex, parentIndices); } else { score += localSemScore(nextIndex, parentIndices); } } return score; }
private boolean existsUnblockedSemiDirectedPath(Node from, Node to, List<Node> cond, Graph G) { Queue<Node> Q = new LinkedList<Node>(); Set<Node> V = new HashSet<Node>(); Q.offer(from); V.add(from); while (!Q.isEmpty()) { Node t = Q.remove(); if (t == to) return true; for (Node u : G.getAdjacentNodes(t)) { Edge edge = G.getEdge(t, u); Node c = Edges.traverseSemiDirected(t, edge); if (c == null) continue; if (cond.contains(c)) continue; if (c == to) return true; if (!V.contains(c)) { V.add(c); Q.offer(c); } } } return false; }
private boolean containsImpureCluster(List<List<Node>> partition, List<List<Node>> trueClusters) { FOR: for (int i = 0; i < partition.size(); i++) { List<Node> cluster = partition.get(i); for (List<Node> trueCluster : trueClusters) { if (trueCluster.containsAll(cluster)) { continue FOR; } } return true; } return false; }
/** * Find all nodes that are connected to Y by an undirected edge that are adjacent to X (that is, * by undirected or directed edge). */ private static List<Node> getNaYX(Node x, Node y, Graph graph) { List<Edge> yEdges = graph.getEdges(y); List<Node> nayx = new ArrayList<Node>(); for (Edge edge : yEdges) { if (!Edges.isUndirectedEdge(edge)) { continue; } Node z = edge.getDistalNode(y); if (!graph.isAdjacentTo(z, x)) { continue; } nayx.add(z); } return nayx; }
/** Get all nodes that are connected to Y by an undirected edge and not adjacent to X. */ private static List<Node> getTNeighbors(Node x, Node y, Graph graph) { List<Edge> yEdges = graph.getEdges(y); List<Node> tNeighbors = new ArrayList<Node>(); for (Edge edge : yEdges) { if (!Edges.isUndirectedEdge(edge)) { continue; } Node z = edge.getDistalNode(y); if (graph.isAdjacentTo(z, x)) { continue; } tNeighbors.add(z); } return tNeighbors; }
// Invalid if then nodes or graph changes. private void calculateArrowsBackward(Node x, Node y, Graph graph) { if (x == y) { return; } if (!graph.isAdjacentTo(x, y)) { return; } if (!knowledgeEmpty()) { if (!getKnowledge().noEdgeRequired(x.getName(), y.getName())) { return; } } List<Node> naYX = getNaYX(x, y, graph); clearArrow(x, y); List<Node> _naYX = new ArrayList<Node>(naYX); DepthChoiceGenerator gen = new DepthChoiceGenerator(_naYX.size(), _naYX.size()); int[] choice; while ((choice = gen.next()) != null) { List<Node> H = GraphUtils.asList(choice, _naYX); if (!knowledgeEmpty()) { if (!validSetByKnowledge(y, H)) { continue; } } double bump = deleteEval(x, y, H, naYX, graph); if (bump > 0.0) { Arrow arrow = new Arrow(bump, x, y, H, naYX); sortedArrows.add(arrow); addLookupArrow(x, y, arrow); } } }
private boolean validInsert(Node x, Node y, List<Node> t, List<Node> naYX, Graph graph) { List<Node> union = new ArrayList<Node>(t); // t and nayx are disjoint union.addAll(naYX); return isClique(union, graph) && !existsUnblockedSemiDirectedPath(y, x, union, graph); }
private void buildIndexing(Graph graph) { this.hashIndices = new HashMap<Node, Integer>(); for (Node node : graph.getNodes()) { this.hashIndices.put(node, variables.indexOf(node)); } }
public void rtest3() { Node x = new GraphNode("X"); Node y = new GraphNode("Y"); Node z = new GraphNode("Z"); Node w = new GraphNode("W"); List<Node> nodes = new ArrayList<Node>(); nodes.add(x); nodes.add(y); nodes.add(z); nodes.add(w); Graph g = new EdgeListGraph(nodes); g.addDirectedEdge(x, y); g.addDirectedEdge(x, z); g.addDirectedEdge(y, w); g.addDirectedEdge(z, w); Graph maxGraph = null; double maxPValue = -1.0; ICovarianceMatrix maxLatentCov = null; Graph mim = DataGraphUtils.randomMim(g, 8, 0, 0, 0, true); // Graph mim = DataGraphUtils.randomSingleFactorModel(5, 5, 8, 0, 0, 0); Graph mimStructure = structure(mim); SemPm pm = new SemPm(mim); System.out.println("\n\nTrue graph:"); System.out.println(mimStructure); SemImInitializationParams params = new SemImInitializationParams(); params.setCoefRange(0.5, 1.5); SemIm im = new SemIm(pm, params); int N = 1000; DataSet data = im.simulateData(N, false); CovarianceMatrix cov = new CovarianceMatrix(data); for (int i = 0; i < 1; i++) { ICovarianceMatrix _cov = DataUtils.reorderColumns(cov); List<List<Node>> partition; FindOneFactorClusters fofc = new FindOneFactorClusters(_cov, TestType.TETRAD_WISHART, .001); fofc.search(); partition = fofc.getClusters(); System.out.println(partition); List<String> latentVarList = reidentifyVariables(mim, data, partition, 2); Mimbuild2 mimbuild = new Mimbuild2(); mimbuild.setAlpha(0.001); // mimbuild.setMinimumSize(5); // To test knowledge. // Knowledge knowledge = new Knowledge2(); // knowledge.setEdgeForbidden("L.Y", "L.W", true); // knowledge.setEdgeRequired("L.Y", "L.Z", true); // mimbuild.setKnowledge(knowledge); Graph mimbuildStructure = mimbuild.search(partition, latentVarList, _cov); double pValue = mimbuild.getpValue(); System.out.println(mimbuildStructure); System.out.println("P = " + pValue); System.out.println("Latent Cov = " + mimbuild.getLatentsCov()); if (pValue > maxPValue) { maxPValue = pValue; maxGraph = new EdgeListGraph(mimbuildStructure); maxLatentCov = mimbuild.getLatentsCov(); } } System.out.println("\n\nTrue graph:"); System.out.println(mimStructure); System.out.println("\nBest graph:"); System.out.println(maxGraph); System.out.println("P = " + maxPValue); System.out.println("Latent Cov = " + maxLatentCov); System.out.println(); }
/** Test if the candidate deletion is a valid operation (Theorem 17 from Chickering, 2002). */ private static boolean validDelete(List<Node> h, List<Node> naXY, Graph graph) { List<Node> list = new ArrayList<Node>(naXY); list.removeAll(h); return isClique(list, graph); }