Esempio n. 1
0
 private void createBaseGrammar(
     List<GrammarNode> wordGrammarNodes, GrammarNode branchNode, GrammarNode finalNode) {
   GrammarNode currNode = branchNode;
   ListIterator<GrammarNode> iter = wordGrammarNodes.listIterator();
   while (iter.hasNext()) {
     GrammarNode nextNode = iter.next();
     currNode.add(nextNode, logMath.getLogOne());
     currNode = nextNode;
   }
   currNode.add(finalNode, logMath.getLogOne());
 }
Esempio n. 2
0
 private void addSelfLoops(List<GrammarNode> wordGrammarNodes) {
   ListIterator<GrammarNode> iter = wordGrammarNodes.listIterator();
   while (iter.hasNext()) {
     GrammarNode currNode = iter.next();
     currNode.add(currNode, logMath.linearToLog(selfLoopProbability));
   }
 }
Esempio n. 3
0
 /**
  * Creates a result
  *
  * @param activeList the active list associated with this result
  * @param resultList the result list associated with this result
  * @param frameNumber the frame number for this result.
  * @param isFinal if true, the result is a final result. This means that the last frame in the
  *     speech segment has been decoded.
  */
 public Result(ActiveList activeList, List<Token> resultList, int frameNumber, boolean isFinal) {
   this.activeList = activeList;
   this.resultList = resultList;
   this.currentFrameNumber = frameNumber;
   this.isFinal = isFinal;
   logMath = LogMath.getInstance();
 }
  /** @return the (linearly scaled) mixture weights of the component densities */
  public float[] getComponentWeights() {
    float[] mixWeights = new float[getMixtureComponents().length];
    for (int i = 0; i < mixWeights.length; i++) {
      mixWeights[i] = (float) logMath.logToLinear(logMixtureWeights[i]);
    }

    return mixWeights;
  }
  public float calculateScore(Data feature) {
    if (feature instanceof DoubleData) {
      System.err.println("DoubleData conversion required on mixture level!");
    }

    float[] featureVector = FloatData.toFloatData(feature).getValues();

    float logTotal = LogMath.getLogZero();
    for (int i = 0; i < mixtureComponents.length; i++) {
      // In linear form, this would be:
      //
      // Total += Mixture[i].score * MixtureWeight[i]
      logTotal =
          logMath.addAsLinear(
              logTotal, mixtureComponents[i].getScore(featureVector) + logMixtureWeights[i]);
    }

    return logTotal;
  }
Esempio n. 6
0
  private void addBackwardJumps(
      List<GrammarNode> wordGrammarNodes, GrammarNode branchNode, GrammarNode finalNode2) {

    GrammarNode currNode;
    for (int i = 0; i < wordGrammarNodes.size(); i++) {
      currNode = wordGrammarNodes.get(i);
      for (int j = Math.max(i - numAllowedWordJumps - 1, 0); j < i - 1; j++) {
        GrammarNode jumpToNode = wordGrammarNodes.get(j);
        currNode.add(jumpToNode, logMath.linearToLog(backwardTransitionProbability));
      }
    }
  }
Esempio n. 7
0
 private void addForwardJumps(
     List<GrammarNode> wordGrammarNodes, GrammarNode branchNode, GrammarNode finalNode) {
   GrammarNode currNode = branchNode;
   for (int i = -1; i < wordGrammarNodes.size(); i++) {
     if (i > -1) {
       currNode = wordGrammarNodes.get(i);
     }
     for (int j = i + 2; j < Math.min(wordGrammarNodes.size(), i + numAllowedWordJumps + 1); j++) {
       GrammarNode jumpNode = wordGrammarNodes.get(j);
       currNode.add(jumpNode, logMath.linearToLog(forwardJumpProbability));
     }
   }
   for (int i = wordGrammarNodes.size() - numAllowedWordJumps - 1;
       i < wordGrammarNodes.size() - 1;
       i++) {
     int j = wordGrammarNodes.size();
     currNode = wordGrammarNodes.get(i);
     currNode.add(
         finalNode, logMath.linearToLog((float) forwardJumpProbability * Math.pow(Math.E, j - i)));
   }
 }
 /**
  * Calculates probability p = w[1]*p[1] + w[2]*p[2] + ... (in log domain)
  *
  * @see
  *     edu.cmu.sphinx.linguist.language.ngram.LanguageModel#getProbability(edu.cmu.sphinx.linguist.WordSequence)
  */
 public float getProbability(WordSequence wordSequence) {
   float prob = 0;
   for (int i = 0; i < numberOfLanguageModels; i++) {
     float p = weights[i] + (languageModels.get(i)).getProbability(wordSequence);
     if (i == 0) {
       prob = p;
     } else {
       prob = logMath.addAsLinear(prob, p);
     }
   }
   return prob;
 }
  /** Tests whether working with different types transformations works properly. */
  @Test
  public void testUnivariateMeanTransformation() {
    float mean = 20;
    float var = 0.001f;

    MixtureComponent gaussian =
        new MixtureComponent(
            new float[] {mean},
            new float[][] {{2}},
            new float[] {5},
            new float[] {var},
            null,
            null);
    Assert.assertTrue(
        LogMath.getLogMath().logToLinear(gaussian.getScore(new float[] {2 * mean + 5})) > 10);
  }
  InterpolatedLanguageModel(LogMath logMath, List<LanguageModel> languageModels, float[] floats) {
    this.languageModels = languageModels;
    this.numberOfLanguageModels = languageModels.size();

    this.weights = new float[floats.length];
    float weightSum = 0;
    for (int i = 0; i < floats.length; i++) {
      weightSum += floats[i];
      this.weights[i] = logMath.linearToLog(floats[i]);
    }
    if (weightSum < 1.0 - EPSILON || weightSum > 1.0 + EPSILON) {
      throw new PropertyException(
          InterpolatedLanguageModel.class.getName(),
          PROP_LANGUAGE_MODEL_WEIGHTS,
          "Weights do not sum to 1.0");
    }
  }
  public void newProperties(PropertySheet ps) throws PropertyException {
    logMath = LogMath.getLogMath();
    logger = ps.getLogger();

    unitManager = (UnitManager) ps.getComponent(PROP_UNIT_MANAGER);

    hmmManager = new HMMManager();
    contextIndependentUnits = new LinkedHashMap<String, Unit>();
    phoneList = new LinkedHashMap<String, Integer>();

    meanTransformationMatrixPool = createDummyMatrixPool("meanTransformationMatrix");
    meanTransformationVectorPool = createDummyVectorPool("meanTransformationMatrix");
    varianceTransformationMatrixPool = createDummyMatrixPool("varianceTransformationMatrix");
    varianceTransformationVectorPool = createDummyVectorPool("varianceTransformationMatrix");

    String modelName = ps.getString(MODEL_NAME);

    String location = ps.getString(LOCATION);
    String phone = ps.getString(PHONE_LIST);
    String dataDir = ps.getString(DATA_DIR);

    logger.info("Creating Sphinx3 acoustic model: " + modelName);
    logger.info("    Path      : " + location);
    logger.info("    phonelist : " + phone);
    logger.info("    dataDir   : " + dataDir);

    // load the HMM model file
    boolean useCDUnits = ps.getBoolean(PROP_USE_CD_UNITS);

    assert !useCDUnits;
    try {
      loadPhoneList(
          ps,
          useCDUnits,
          StreamFactory.getInputStream(location, phone),
          location + File.separator + phone);
    } catch (StreamCorruptedException sce) {
      printPhoneListHelp();
    } catch (IOException e) {
      e.printStackTrace();
    }
  }
  /**
   * Adds transition matrix to the transition matrices pool
   *
   * @param pool the pool to add matrix to
   * @param hmmId current HMM's id
   * @param numEmittingStates number of states in current HMM
   * @param floor the transition probability floor
   * @param skip if true, states can be skipped
   * @throws IOException if an error occurs while loading the data
   */
  private void addModelToTransitionMatrixPool(
      Pool<float[][]> pool, int hmmId, int numEmittingStates, float floor, boolean skip)
      throws IOException {

    assert pool != null;

    // Add one to account for the last, non-emitting, state
    int numStates = numEmittingStates + 1;

    float[][] tmat = new float[numStates][numStates];

    for (int j = 0; j < numStates; j++) {
      for (int k = 0; k < numStates; k++) {
        // Just to be sure...
        tmat[j][k] = 0.0f;

        // the last row is just zeros, so we just do
        // the first (numStates - 1) rows

        // The value assigned could be anything, provided
        // we normalize it.
        if (j < numStates - 1) {
          // Usual case: state can transition to itself
          // or the next state.
          if (k == j || k == j + 1) {
            tmat[j][k] = floor;
          }
          // If we can skip, we can also transition to
          // the next state
          if (skip) {
            if (k == j + 2) {
              tmat[j][k] = floor;
            }
          }
        }
      }
      normalize(tmat[j]);
      logMath.linearToLog(tmat[j]);
    }
    pool.put(hmmId, tmat);
  }
  /**
   * Compute the density values of a sampled interval with an univariate <code>MixtureComponent
   * </code> and compare values with the precomputed-computed ones.
   */
  @Test
  public void testUnivariateDensity() {

    float minX = 10;
    float maxX = 30;
    float resolution = 0.1f;

    float mean = 20;
    float var = 3;

    MixtureComponent gaussian = new MixtureComponent(new float[] {mean}, new float[] {var});

    for (float curX = minX; curX <= maxX; curX += resolution) {
      double gauLogScore = gaussian.getScore(new FloatData(new float[] {curX}, 16000, 0));

      double manualScore =
          (1 / sqrt(var * 2 * PI)) * exp((-0.5 / var) * (curX - mean) * (curX - mean));
      double gauScore = LogMath.getLogMath().logToLinear((float) gauLogScore);

      Assert.assertEquals(manualScore, gauScore, 1E-5);
    }
  }
  public void newProperties(PropertySheet ps) throws PropertyException {
    if (allocated) {
      throw new RuntimeException("Can't change properties after allocation");
    }
    logMath = (LogMath) ps.getComponent(PROP_LOG_MATH);
    languageModels = ps.getComponentList(PROP_LANGUAGE_MODELS, LanguageModel.class);
    numberOfLanguageModels = languageModels.size();

    // read weights as a String List.
    List<String> items = ps.getStringList(PROP_LANGUAGE_MODEL_WEIGHTS);
    if (items.size() != numberOfLanguageModels) {
      throw new RuntimeException("Number of weights not equal to number of language models");
    }

    // convert Strings to floats and assign weights.
    float[] floats = new float[items.size()];
    weights = new float[floats.length];
    float weightSum = 0;
    for (int i = 0; i < items.size(); i++) {
      try {
        floats[i] = Float.parseFloat(items.get(i));
        weightSum += floats[i];
        weights[i] = logMath.linearToLog(floats[i]);
      } catch (NumberFormatException e) {
        throw new PropertyException(
            InterpolatedLanguageModel.class.getName(),
            PROP_LANGUAGE_MODEL_WEIGHTS,
            "Float value expected from the property list. But found:" + items.get(i));
      }
    }
    if (weightSum < 1.0 - EPSILON || weightSum > 1.0 + EPSILON) {
      throw new PropertyException(
          InterpolatedLanguageModel.class.getName(),
          PROP_LANGUAGE_MODEL_WEIGHTS,
          "Weights do not sum to 1.0");
    }
  }
Esempio n. 15
0
  @Override
  protected GrammarNode createGrammar() throws IOException {

    logger.info("Creating Grammar");
    initialNode = createGrammarNode(Dictionary.SILENCE_SPELLING);
    finalNode = createGrammarNode(Dictionary.SILENCE_SPELLING);
    finalNode.setFinalNode(true);
    final GrammarNode branchNode = createGrammarNode(false);

    final List<GrammarNode> wordGrammarNodes = new ArrayList<GrammarNode>();
    final int end = tokens.size();

    logger.info("Creating Grammar nodes");
    for (final String word : tokens.subList(0, end)) {
      final GrammarNode wordNode = createGrammarNode(word.toLowerCase());
      wordGrammarNodes.add(wordNode);
    }
    logger.info("Done creating grammar node");

    // now connect all the GrammarNodes together
    initialNode.add(branchNode, LogMath.getLogOne());

    createBaseGrammar(wordGrammarNodes, branchNode, finalNode);

    if (modelDeletions) {
      addForwardJumps(wordGrammarNodes, branchNode, finalNode);
    }
    if (modelBackwardJumps) {
      addBackwardJumps(wordGrammarNodes, branchNode, finalNode);
    }
    if (modelRepetitions) {
      addSelfLoops(wordGrammarNodes);
    }
    logger.info("Done making Grammar");
    // initialNode.dumpDot("./graph.dot");
    return initialNode;
  }
  /**
   * Adds model to the mixture weights
   *
   * @param pool the pool to add models to
   * @param stateID vector containing state ids for hmm
   * @param numStreams the number of streams
   * @param numGaussiansPerState the number of Gaussians per state
   * @param floor the minimum mixture weight allowed
   * @throws IOException if an error occurs while loading the data
   */
  private void addModelToMixtureWeightPool(
      Pool<float[]> pool, int[] stateID, int numStreams, int numGaussiansPerState, float floor)
      throws IOException {

    int numStates = stateID.length;

    assert pool != null;

    int numInPool = pool.getFeature(NUM_SENONES, 0);
    pool.setFeature(NUM_SENONES, numStates + numInPool);
    numInPool = pool.getFeature(NUM_STREAMS, -1);
    if (numInPool == -1) {
      pool.setFeature(NUM_STREAMS, numStreams);
    } else {
      assert numInPool == numStreams;
    }
    numInPool = pool.getFeature(NUM_GAUSSIANS_PER_STATE, -1);
    if (numInPool == -1) {
      pool.setFeature(NUM_GAUSSIANS_PER_STATE, numGaussiansPerState);
    } else {
      assert numInPool == numGaussiansPerState;
    }

    // TODO: allow any number for numStreams
    assert numStreams == 1;
    for (int i = 0; i < numStates; i++) {
      int state = stateID[i];
      float[] logMixtureWeight = new float[numGaussiansPerState];
      // Initialize the weights with the same value, e.g. floor
      floorData(logMixtureWeight, floor);
      // Normalize, so the numbers are not all too low
      normalize(logMixtureWeight);
      logMath.linearToLog(logMixtureWeight);
      pool.put(state, logMixtureWeight);
    }
  }
 @BeforeSuite
 public void setupLogMath() {
   LogMath.setUseTable(true);
 }