Esempio n. 1
0
  public void removeSelection() {
    int[] selRows = dataTable.getSelectedRows();
    Set<AbstractPartitionData> partitionsToRemove = new HashSet<AbstractPartitionData>();
    for (int row : selRows) {
      partitionsToRemove.add(options.dataPartitions.get(row));
    }

    boolean hasIdenticalTaxa =
        options.hasIdenticalTaxa(); // need to check this before removing partitions

    // TODO: would probably be a good idea to check if the user wants to remove the last partition
    options.dataPartitions.removeAll(partitionsToRemove);

    if (options.dataPartitions.size() == 0) {
      // all data partitions removed so reset the taxa
      options.reset();
      useStarBEASTCheck.setSelected(false);
      frame.setupStarBEAST(false);
      frame.statusLabel.setText("");
      frame.setAllOptions();
      frame.getExportAction().setEnabled(false);
    } else if (!hasIdenticalTaxa) {
      options.updateTaxonList();
    }

    dataTableModel.fireTableDataChanged();

    fireDataChanged();
  }
Esempio n. 2
0
  public void removeSelection() {
    int[] selRows = dataTable.getSelectedRows();
    Set<PartitionData> partitionsToRemove = new HashSet<PartitionData>();
    for (int row : selRows) {
      partitionsToRemove.add(options.dataPartitions.get(row));
    }

    // TODO: would probably be a good idea to check if the user wants to remove the last partition
    options.dataPartitions.removeAll(partitionsToRemove);

    //        if (options.allowDifferentTaxa && options.dataPartitions.size() < 2) {
    //            uncheckAllowDifferentTaxa();
    //        }

    if (options.getNonTraitsDataList().size() == 0) {
      // all data partitions removed so reset the taxa
      options.reset();
      useStarBEASTCheck.setSelected(false);
      frame.statusLabel.setText("");
      frame.setAllOptions();
      frame.getExportAction().setEnabled(false);
    }

    dataTableModel.fireTableDataChanged();

    fireDataChanged();
  }
  public void setOptions(BeautiOptions options) {

    this.options = options;

    resetPanel();

    settingOptions = true;

    int selRow = partitionTable.getSelectedRow();
    partitionTableModel.fireTableDataChanged();
    if (options.getDataPartitions().size() > 0) {
      if (selRow < 0) {
        selRow = 0;
      }
      partitionTable.getSelectionModel().setSelectionInterval(selRow, selRow);

      setCurrentPartition(options.getDataPartitions().get(selRow));
    }

    AncestralStatesOptionsPanel panel = optionsPanels.get(currentPartition);
    if (panel != null) {
      panel.setupPanel();
    }

    settingOptions = false;

    validate();
    repaint();
  }
Esempio n. 4
0
  private void updateOtherFileNames(BeautiOptions options) {
    if (options.fileNameStem != null) {
      //            fileNameStemField.setText(options.fileNameStem);

      options.logFileName = options.fileNameStem + ".log";
      if (addTxt.isSelected()) options.logFileName = options.logFileName + ".txt";
      logFileNameField.setText(options.logFileName);

      //            if (options.mapTreeFileName == null) {
      //			    mapTreeFileNameField.setText(options.fileNameStem + ".MAP.tree");
      //            } else {
      //                mapTreeFileNameField.setText(options.mapTreeFileName);
      //            }

      updateTreeFileNameList();
      treeFileNameField.setText(displayTreeList(options.treeFileName));

      if (options.substTreeLog) {
        substTreeFileNameField.setText(displayTreeList(options.substTreeFileName));
      } else {
        substTreeFileNameField.setText("");
      }

      options.operatorAnalysisFileName = options.fileNameStem + ".ops";
      if (addTxt.isSelected()) {
        options.operatorAnalysisFileName = options.operatorAnalysisFileName + ".txt";
      }
      operatorAnalaysisFileNameField.setEnabled(options.operatorAnalysis);
      if (options.operatorAnalysis) {
        operatorAnalaysisFileNameField.setText(options.operatorAnalysisFileName);
      } else {
        operatorAnalaysisFileNameField.setText("");
      }

      //            mapTreeLogCheck.setEnabled(true);
      //            mapTreeLogCheck.setSelected(options.mapTreeLog);
      //            mapTreeFileNameField.setEnabled(options.mapTreeLog);

      substTreeLogCheck.setEnabled(true);
      substTreeLogCheck.setSelected(options.substTreeLog);

    } else {
      //            fileNameStemField.setText(fileNameStem);
      //            fileNameStemField.setEnabled(false);
      logFileNameField.setText(DEFAULT_FILE_NAME_STEM + ".log");
      treeFileNameField.setText(DEFAULT_FILE_NAME_STEM + "." + STARBEASTOptions.TREE_FILE_NAME);
      //            mapTreeLogCheck.setEnabled(false);
      //            mapTreeFileNameField.setEnabled(false);
      //            mapTreeFileNameField.setText("untitled");
      substTreeLogCheck.setSelected(false);
      substTreeFileNameField.setEnabled(false);
      substTreeFileNameField.setText("");
      operatorAnalaysisCheck.setSelected(false);
      operatorAnalaysisFileNameField.setText("");
    }
  }
Esempio n. 5
0
  public void setOptions(BeautiOptions options) {

    this.options = options;

    modelsChanged();

    useStarBEASTCheck.setEnabled(
        options.getNonTraitsDataList().size() > 0); // single partition is allowed
    createImportTraitButton.setEnabled(options.getNonTraitsDataList().size() > 0);

    dataTableModel.fireTableDataChanged();
  }
Esempio n. 6
0
  public void linkTrees() { // keep previous PartitionTreePrior for reuse
    int[] selRows = dataTable.getSelectedRows();

    List<AbstractPartitionData> selectedPartitionData = new ArrayList<AbstractPartitionData>();
    for (int row : selRows) {
      AbstractPartitionData partition = options.dataPartitions.get(row);

      if (!selectedPartitionData.contains(partition)) selectedPartitionData.add(partition);
    }

    if (selectedPartitionData.size() > 1) {
      if (!options.hasIdenticalTaxa(selectedPartitionData)) {
        String errMsg = "To share a tree, partitions need to have identical taxa.";
        if (selectedPartitionData.get(0).getDataType().getType() == DataType.MICRO_SAT)
          errMsg += "\nThe data must be all diploid or all haploid when you want to link the tree.";
        JOptionPane.showMessageDialog(
            this, errMsg, "Illegal Configuration", JOptionPane.ERROR_MESSAGE);
        return;
      }
    }

    Object[] treeArray = options.getPartitionTreeModels(selectedPartitionData).toArray();

    if (selectTreeDialog == null) {
      selectTreeDialog = new SelectTreeDialog(frame);
    }

    int result = selectTreeDialog.showDialog(treeArray);
    if (result != JOptionPane.CANCEL_OPTION) {
      PartitionTreeModel model = selectTreeDialog.getTree();
      if (selectTreeDialog.getMakeCopy()) {
        model.setName(selectTreeDialog.getName());
      }
      PartitionTreePrior prior = model.getPartitionTreePrior();
      options.linkTreePriors(prior);

      for (AbstractPartitionData partition : selectedPartitionData) {
        partition.setPartitionTreeModel(model);
      }

      for (Taxa taxa :
          options.taxonSets) { // Issue 454: all the taxon sets are deleted when link/unlink tree
        PartitionTreeModel prevModel = options.taxonSetsTreeModel.get(taxa);
        if (prevModel != model) options.taxonSetsTreeModel.put(taxa, model);
      }
    }

    modelsChanged();

    fireDataChanged();
    repaint();
  }
Esempio n. 7
0
  public void linkModels() {
    int[] selRows = dataTable.getSelectedRows();
    List<AbstractPartitionData> selectedPartitionData = new ArrayList<AbstractPartitionData>();
    DataType dateType = null;
    for (int row : selRows) {
      AbstractPartitionData partition = options.dataPartitions.get(row);
      if (dateType == null) {
        dateType = partition.getDataType();
      } else {
        if (partition.getDataType() != dateType) {
          JOptionPane.showMessageDialog(
              this,
              "Can only link the models for data partitions \n"
                  + "of the same data type (e.g., nucleotides)",
              "Unable to link models",
              JOptionPane.ERROR_MESSAGE);
          return;
        }
      }

      if (!selectedPartitionData.contains(partition)) selectedPartitionData.add(partition);
    }

    Object[] modelArray = options.getPartitionSubstitutionModels(selectedPartitionData).toArray();

    if (selectModelDialog == null) {
      selectModelDialog = new SelectModelDialog(frame);
    }

    int result = selectModelDialog.showDialog(modelArray);
    if (result != JOptionPane.CANCEL_OPTION) {
      PartitionSubstitutionModel model = selectModelDialog.getModel();
      if (selectModelDialog.getMakeCopy()) {
        model.setName(selectModelDialog.getName());
      }

      for (AbstractPartitionData partition : selectedPartitionData) {
        partition.setPartitionSubstitutionModel(model);
      }
    }

    if (options.getPartitionSubstitutionModels(Microsatellite.INSTANCE).size() <= 1) {
      options.shareMicroSat = true;
    }

    modelsChanged();

    fireDataChanged();
    repaint();
  }
Esempio n. 8
0
  public void linkTrees() { // keep previous PartitionTreePrior for reuse
    int[] selRows = dataTable.getSelectedRows();

    List<PartitionData> selectedPartitionData = new ArrayList<PartitionData>();
    for (int row : selRows) {
      PartitionData partition = options.dataPartitions.get(row);

      if (!selectedPartitionData.contains(partition)) selectedPartitionData.add(partition);
    }

    if (options.allowDifferentTaxa) { // BEAST cannot handle multi <taxa> ref for 1 tree
      if (selectedPartitionData.size() > 1) {
        if (!options.validateDiffTaxa(selectedPartitionData)) {
          JOptionPane.showMessageDialog(
              this,
              "To accommodate different taxa for each partition trees cannot be linked.",
              "Illegal Configuration",
              JOptionPane.ERROR_MESSAGE);
          return;
        }
      }
    }

    Object[] treeArray = options.getPartitionTreeModels(selectedPartitionData).toArray();

    if (selectTreeDialog == null) {
      selectTreeDialog = new SelectTreeDialog(frame);
    }

    int result = selectTreeDialog.showDialog(treeArray);
    if (result != JOptionPane.CANCEL_OPTION) {
      PartitionTreeModel model = selectTreeDialog.getTree();
      if (selectTreeDialog.getMakeCopy()) {
        model.setName(selectTreeDialog.getName());
      }
      PartitionTreePrior prior = model.getPartitionTreePrior();
      options.linkTreePriors(prior);

      for (PartitionData partition : selectedPartitionData) {
        partition.setPartitionTreeModel(model);
      }
    }

    modelsChanged();

    fireDataChanged();
    options.taxonSets.clear();
    options.taxonSetsMono.clear();
    repaint();
  }
  private void selectionChanged() {
    if (settingOptions) return;

    int selRow = partitionTable.getSelectedRow();

    if (selRow >= options.getDataPartitions().size()) {
      selRow = 0;
      partitionTable.getSelectionModel().setSelectionInterval(selRow, selRow);
    }

    if (selRow >= 0) {
      setCurrentPartition(options.getDataPartitions().get(selRow));
      //            frame.modelSelectionChanged(!isUsed(selRow));
    }
  }
Esempio n. 10
0
  public void linkClocks() { // keep previous PartitionTreePrior for reuse
    int[] selRows = dataTable.getSelectedRows();

    List<PartitionData> selectedPartitionData = new ArrayList<PartitionData>();
    for (int row : selRows) {
      PartitionData partition = options.dataPartitions.get(row);

      if (!selectedPartitionData.contains(partition)) selectedPartitionData.add(partition);
    }
    Object[] modelArray = options.getPartitionClockModels(selectedPartitionData).toArray();

    if (selectClockDialog == null) {
      selectClockDialog = new SelectClockDialog(frame);
    }

    int result = selectClockDialog.showDialog(modelArray);
    if (result != JOptionPane.CANCEL_OPTION) {
      PartitionClockModel model = selectClockDialog.getModel();
      if (selectClockDialog.getMakeCopy()) {
        model.setName(selectClockDialog.getName());
      }

      for (PartitionData partition : selectedPartitionData) {
        partition.setPartitionClockModel(model);
      }
    }

    modelsChanged();

    fireDataChanged();
    repaint();
  }
Esempio n. 11
0
  public void unlinkTrees() { // reuse previous PartitionTreePrior
    int[] selRows = dataTable.getSelectedRows();
    for (int row : selRows) {
      PartitionData partition = options.dataPartitions.get(row);

      PartitionTreeModel model = partition.getPartitionTreeModel();
      if (!model.getName().equals(partition.getName())
          && partition.getTraitType() == null) { // not a trait
        PartitionTreeModel newTree = new PartitionTreeModel(options, partition);

        // this prevents partition not broken, and used for unsharing tree prior only,
        // because sharing uses shareSameTreePrior, unsharing uses getPartitionTreePrior
        //                newTree.setPartitionTreePrior(newPrior); // important

        partition.setPartitionTreeModel(newTree);
      }
    }

    options.linkTreePriors(frame.getCurrentPartitionTreePrior());

    modelsChanged();

    fireDataChanged();
    options.taxonSets.clear();
    options.taxonSetsMono.clear();
    repaint();
  }
 private void resetPanel() {
   if (!options.hasData()) {
     currentPartition = null;
     optionsPanels.clear();
     optionsPanelParent.removeAll();
   }
 }
Esempio n. 13
0
  public void setOptions(BeautiOptions options) {
    this.options = options;

    chainLengthField.setValue(options.chainLength);
    echoEveryField.setValue(options.echoEvery);
    logEveryField.setValue(options.logEvery);

    if (options.fileNameStem != null) {
      fileNameStemField.setText(options.fileNameStem);
    } else {
      fileNameStemField.setText(DEFAULT_FILE_NAME_STEM);
      fileNameStemField.setEnabled(false);
    }

    operatorAnalaysisCheck.setSelected(options.operatorAnalysis);

    updateOtherFileNames(options);

    if (options.contains(Microsatellite.INSTANCE)) {
      samplePriorCheckBox.setSelected(false);
      samplePriorCheckBox.setVisible(false);
    } else {
      samplePriorCheckBox.setVisible(true);
      samplePriorCheckBox.setSelected(options.samplePriorOnly);
    }

    optionsPanel.validate();
    optionsPanel.repaint();
  }
Esempio n. 14
0
  public boolean createFromTraits(List<TraitData> traits) {
    int selRow = -1;

    if (selectTraitDialog == null) {
      selectTraitDialog = new SelectTraitDialog(frame);
    }

    if (traits == null || traits.size() == 0) {
      int result = selectTraitDialog.showDialog(options.traits, null);
      if (result != JOptionPane.CANCEL_OPTION) {
        TraitData trait = selectTraitDialog.getTrait();
        String name = trait.getName();
        if (selectTraitDialog.getMakeCopy()) {
          name = selectTraitDialog.getName();
        }

        selRow = options.createPartitionForTraits(name, trait);
      } else {
        return false;
      }
    } else {
      if (traits.size() > 1) {
        // a set of traits have been passed to the function
        int result = selectTraitDialog.showDialog(null, null);
        if (result != JOptionPane.CANCEL_OPTION) {
          String name = selectTraitDialog.getName();
          selRow = options.createPartitionForTraits(name, traits);
        } else {
          return false;
        }
      } else {
        selRow = options.createPartitionForTraits(traits.get(0).getName(), traits);
      }
    }

    modelsChanged();
    dataTableModel.fireTableDataChanged();

    if (selRow != -1) {
      dataTable.getSelectionModel().setSelectionInterval(selRow, selRow);
    }
    fireDataChanged();
    repaint();

    return true;
  }
Esempio n. 15
0
 private boolean parameterExists(String name) {
   for (Parameter parameter : options.selectParameters()) {
     if (parameter.getName().equals(name)) {
       return true;
     }
   }
   return false;
 }
Esempio n. 16
0
  private void modelsChanged() {
    TableColumn col = dataTable.getColumnModel().getColumn(5);
    col.setCellEditor(new ComboBoxCellEditor());

    col = dataTable.getColumnModel().getColumn(6);
    col.setCellEditor(new ComboBoxCellEditor());

    col = dataTable.getColumnModel().getColumn(7);
    col.setCellEditor(
        new DefaultCellEditor(new JComboBox(options.getNonTraitPartitionTreeModels().toArray())));
  }
Esempio n. 17
0
  private void fireDataChanged() {
    //        options.updateLinksBetweenPDPCMPSMPTMPTPP();
    options.updatePartitionAllLinks();

    if (!(options.clockModelOptions.getRateOptionClockModel() == FixRateType.TIP_CALIBRATED
        || options.clockModelOptions.getRateOptionClockModel() == FixRateType.NODE_CALIBRATED
        || options.clockModelOptions.getRateOptionClockModel() == FixRateType.RATE_CALIBRATED)) {
      // TODO correct?
      options.clockModelOptions.fixRateOfFirstClockPartition();
    }

    frame.setDirty();
  }
Esempio n. 18
0
  private void updateTreeFileNameList() {
    options.treeFileName.clear();
    options.substTreeFileName.clear();
    String treeFN;

    for (PartitionTreeModel tree : options.getPartitionTreeModels()) {
      if (options.substTreeLog) {
        treeFN =
            options.fileNameStem
                + "."
                + tree.getPrefix()
                + "(time)."
                + STARBEASTOptions.TREE_FILE_NAME;
      } else {
        treeFN =
            options.fileNameStem
                + "."
                + tree.getPrefix()
                + STARBEASTOptions.TREE_FILE_NAME; // stem.partitionName.tree
      }
      if (addTxt.isSelected()) treeFN = treeFN + ".txt";
      options.treeFileName.add(treeFN);

      if (options.substTreeLog) {
        treeFN =
            options.fileNameStem
                + "."
                + tree.getPrefix()
                + "(subst)."
                + STARBEASTOptions.TREE_FILE_NAME;
        if (addTxt.isSelected()) treeFN = treeFN + ".txt";
        options.substTreeFileName.add(treeFN);
      }
    }

    if (options.useStarBEAST) {
      treeFN = options.fileNameStem + "." + options.starBEASTOptions.SPECIES_TREE_FILE_NAME;
      if (addTxt.isSelected()) treeFN = treeFN + ".txt";
      options.treeFileName.add(treeFN);
      // TODO: species sub tree
    }
  }
Esempio n. 19
0
  public void getOptions(BeautiOptions options) {
    options.fileNameStem = fileNameStemField.getText();
    options.logFileName = logFileNameField.getText();

    //        options.mapTreeLog = mapTreeLogCheck.isSelected();
    //        options.mapTreeFileName = mapTreeFileNameField.getText();

    options.substTreeLog = substTreeLogCheck.isSelected();
    updateTreeFileNameList();

    options.operatorAnalysis = operatorAnalaysisCheck.isSelected();
    options.operatorAnalysisFileName = operatorAnalaysisFileNameField.getText();

    options.samplePriorOnly = samplePriorCheckBox.isSelected();
  }
  /**
   * Write the marginalLikelihoodEstimator, pathSamplingAnalysis and steppingStoneSamplingAnalysis
   * blocks.
   *
   * @param writer XMLWriter
   */
  public void writeMLE(XMLWriter writer, MarginalLikelihoodEstimationOptions options) {

    if (options.performMLE) {

      writer.writeComment("Define marginal likelihood estimator (PS/SS) settings");

      List<Attribute> attributes = new ArrayList<Attribute>();
      // attributes.add(new Attribute.Default<String>(XMLParser.ID, "mcmc"));
      attributes.add(
          new Attribute.Default<Integer>(
              MarginalLikelihoodEstimator.CHAIN_LENGTH, options.mleChainLength));
      attributes.add(
          new Attribute.Default<Integer>(
              MarginalLikelihoodEstimator.PATH_STEPS, options.pathSteps));
      attributes.add(
          new Attribute.Default<String>(
              MarginalLikelihoodEstimator.PATH_SCHEME, options.pathScheme));
      if (!options.pathScheme.equals(MarginalLikelihoodEstimator.LINEAR)) {
        attributes.add(
            new Attribute.Default<Double>(
                MarginalLikelihoodEstimator.ALPHA, options.schemeParameter));
      }

      writer.writeOpenTag(MarginalLikelihoodEstimator.MARGINAL_LIKELIHOOD_ESTIMATOR, attributes);

      writer.writeOpenTag("samplers");
      writer.writeIDref("mcmc", "mcmc");
      writer.writeCloseTag("samplers");

      attributes = new ArrayList<Attribute>();
      attributes.add(new Attribute.Default<String>(XMLParser.ID, "pathLikelihood"));
      writer.writeOpenTag(PathLikelihood.PATH_LIKELIHOOD, attributes);
      writer.writeOpenTag(PathLikelihood.SOURCE);
      writer.writeIDref(CompoundLikelihoodParser.POSTERIOR, CompoundLikelihoodParser.POSTERIOR);
      writer.writeCloseTag(PathLikelihood.SOURCE);
      writer.writeOpenTag(PathLikelihood.DESTINATION);
      writer.writeIDref(CompoundLikelihoodParser.PRIOR, CompoundLikelihoodParser.PRIOR);
      writer.writeCloseTag(PathLikelihood.DESTINATION);
      writer.writeCloseTag(PathLikelihood.PATH_LIKELIHOOD);

      attributes = new ArrayList<Attribute>();
      attributes.add(new Attribute.Default<String>(XMLParser.ID, "MLELog"));
      attributes.add(new Attribute.Default<Integer>("logEvery", options.mleLogEvery));
      attributes.add(new Attribute.Default<String>("fileName", options.mleFileName));
      writer.writeOpenTag("log", attributes);
      writer.writeIDref("pathLikelihood", "pathLikelihood");
      writer.writeCloseTag("log");

      writer.writeCloseTag(MarginalLikelihoodEstimator.MARGINAL_LIKELIHOOD_ESTIMATOR);

      writer.writeComment("Path sampling estimator from collected samples");
      attributes = new ArrayList<Attribute>();
      attributes.add(new Attribute.Default<String>("fileName", options.mleFileName));
      writer.writeOpenTag(PathSamplingAnalysis.PATH_SAMPLING_ANALYSIS, attributes);
      writer.writeTag(
          "likelihoodColumn", new Attribute.Default<String>("name", "pathLikelihood.delta"), true);
      writer.writeTag(
          "thetaColumn", new Attribute.Default<String>("name", "pathLikelihood.theta"), true);
      writer.writeCloseTag(PathSamplingAnalysis.PATH_SAMPLING_ANALYSIS);

      writer.writeComment("Stepping-stone sampling estimator from collected samples");
      attributes = new ArrayList<Attribute>();
      attributes.add(new Attribute.Default<String>("fileName", options.mleFileName));
      writer.writeOpenTag(
          SteppingStoneSamplingAnalysis.STEPPING_STONE_SAMPLING_ANALYSIS, attributes);
      writer.writeTag(
          "likelihoodColumn", new Attribute.Default<String>("name", "pathLikelihood.delta"), true);
      writer.writeTag(
          "thetaColumn", new Attribute.Default<String>("name", "pathLikelihood.theta"), true);
      writer.writeCloseTag(SteppingStoneSamplingAnalysis.STEPPING_STONE_SAMPLING_ANALYSIS);

    } else if (options.performMLEGSS) {

      // First define necessary components for the tree working prior
      if (options.choiceTreeWorkingPrior.equals("Product of exponential distributions")) {
        // more general product of exponentials needs to be constructed

        if (DEBUG) {
          System.err.println("productOfExponentials selected: " + options.choiceTreeWorkingPrior);
        }

        List<Attribute> attributes = new ArrayList<Attribute>();
        attributes.add(new Attribute.Default<String>(XMLParser.ID, "exponentials"));
        attributes.add(new Attribute.Default<String>("fileName", beautiOptions.logFileName));
        attributes.add(
            new Attribute.Default<String>("burnin", "" + beautiOptions.chainLength * 0.10));
        attributes.add(
            new Attribute.Default<String>("parameterColumn", "coalescentEventsStatistic"));
        attributes.add(
            new Attribute.Default<String>(
                "dimension", "" + (beautiOptions.taxonList.getTaxonCount() - 1)));

        writer.writeOpenTag(
            TreeWorkingPriorParsers.PRODUCT_OF_EXPONENTIALS_POSTERIOR_MEANS_LOESS, attributes);
        writer.writeTag(
            TreeModel.TREE_MODEL,
            new Attribute.Default<String>(XMLParser.ID, TreeModel.TREE_MODEL),
            true);
        writer.writeCloseTag(TreeWorkingPriorParsers.PRODUCT_OF_EXPONENTIALS_POSTERIOR_MEANS_LOESS);

      } else {
        // matching coalescent model has to be constructed
        // getting the coalescent model
        if (DEBUG) {
          System.err.println(
              "matching coalescent model selected: " + options.choiceTreeWorkingPrior);
          System.err.println(beautiOptions.getPartitionTreePriors().get(0).getNodeHeightPrior());
        }
        /*for (PartitionTreePrior prior : options.getPartitionTreePriors()) {
            treePriorGenerator.writeTreePriorModel(prior, writer);
            writer.writeText("");
        }*/
        // TODO: extend for more than 1 coalescent model?
        TreePriorType nodeHeightPrior =
            beautiOptions.getPartitionTreePriors().get(0).getNodeHeightPrior();

        switch (nodeHeightPrior) {
          case CONSTANT:
            writer.writeComment("A working prior for the constant population size model.");
            writer.writeOpenTag(
                ConstantPopulationModelParser.CONSTANT_POPULATION_MODEL,
                new Attribute[] {
                  new Attribute.Default<String>(XMLParser.ID, modelPrefix + "constantReference"),
                  new Attribute.Default<String>(
                      "units", Units.Utils.getDefaultUnitName(beautiOptions.units))
                });

            writer.writeOpenTag(ConstantPopulationModelParser.POPULATION_SIZE);
            writeParameter(
                "constantReference.popSize",
                "constant.popSize",
                beautiOptions.logFileName,
                (int) (options.mleChainLength * 0.10),
                writer);
            writer.writeCloseTag(ConstantPopulationModelParser.POPULATION_SIZE);
            writer.writeCloseTag(ConstantPopulationModelParser.CONSTANT_POPULATION_MODEL);

            writer.writeComment("A working prior for the coalescent.");
            writer.writeOpenTag(
                CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD,
                new Attribute[] {
                  new Attribute.Default<String>(XMLParser.ID, modelPrefix + "coalescentReference")
                });
            writer.writeOpenTag(CoalescentLikelihoodParser.MODEL);
            writer.writeIDref(
                ConstantPopulationModelParser.CONSTANT_POPULATION_MODEL,
                beautiOptions.getPartitionTreePriors().get(0).getPrefix() + "constantReference");
            writer.writeCloseTag(CoalescentLikelihoodParser.MODEL);
            writer.writeOpenTag(CoalescentLikelihoodParser.POPULATION_TREE);
            writer.writeIDref(TreeModel.TREE_MODEL, modelPrefix + TreeModel.TREE_MODEL);
            writer.writeCloseTag(CoalescentLikelihoodParser.POPULATION_TREE);
            writer.writeCloseTag(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD);

            break;

          case EXPONENTIAL:
            writer.writeComment("A working prior for the exponential growth model.");
            writer.writeOpenTag(
                ExponentialGrowthModelParser.EXPONENTIAL_GROWTH_MODEL,
                new Attribute[] {
                  new Attribute.Default<String>(XMLParser.ID, modelPrefix + "exponentialReference"),
                  new Attribute.Default<String>(
                      "units", Units.Utils.getDefaultUnitName(beautiOptions.units))
                });

            writer.writeOpenTag(ExponentialGrowthModelParser.POPULATION_SIZE);
            writeParameter(
                "exponentialReference.popSize",
                "exponential.popSize",
                beautiOptions.logFileName,
                (int) (options.mleChainLength * 0.10),
                writer);
            writer.writeCloseTag(ExponentialGrowthModelParser.POPULATION_SIZE);
            writer.writeOpenTag(ExponentialGrowthModelParser.GROWTH_RATE);
            writeParameter(
                "exponentialReference.growthRate",
                "exponential.growthRate",
                beautiOptions.logFileName,
                (int) (options.mleChainLength * 0.10),
                writer);
            writer.writeCloseTag(ExponentialGrowthModelParser.GROWTH_RATE);
            writer.writeCloseTag(ExponentialGrowthModelParser.EXPONENTIAL_GROWTH_MODEL);

            writer.writeComment("A working prior for the coalescent.");
            writer.writeOpenTag(
                CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD,
                new Attribute[] {
                  new Attribute.Default<String>(XMLParser.ID, modelPrefix + "coalescentReference")
                });
            writer.writeOpenTag(CoalescentLikelihoodParser.MODEL);
            writer.writeIDref(
                ExponentialGrowthModelParser.EXPONENTIAL_GROWTH_MODEL,
                beautiOptions.getPartitionTreePriors().get(0).getPrefix() + "constantReference");
            writer.writeCloseTag(CoalescentLikelihoodParser.MODEL);
            writer.writeOpenTag(CoalescentLikelihoodParser.POPULATION_TREE);
            writer.writeIDref(TreeModel.TREE_MODEL, modelPrefix + TreeModel.TREE_MODEL);
            writer.writeCloseTag(CoalescentLikelihoodParser.POPULATION_TREE);
            writer.writeCloseTag(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD);

            break;

          case LOGISTIC:
            writer.writeComment("A working prior for the logistic growth model.");
            writer.writeOpenTag(
                LogisticGrowthModelParser.LOGISTIC_GROWTH_MODEL,
                new Attribute[] {
                  new Attribute.Default<String>(XMLParser.ID, modelPrefix + "logisticReference"),
                  new Attribute.Default<String>(
                      "units", Units.Utils.getDefaultUnitName(beautiOptions.units))
                });

            writer.writeOpenTag(LogisticGrowthModelParser.POPULATION_SIZE);
            writeParameter(
                "logisticReference.popSize",
                "logistic.popSize",
                beautiOptions.logFileName,
                (int) (options.mleChainLength * 0.10),
                writer);
            writer.writeCloseTag(LogisticGrowthModelParser.POPULATION_SIZE);
            writer.writeOpenTag(LogisticGrowthModelParser.GROWTH_RATE);
            writeParameter(
                "logisticReference.growthRate",
                "logistic.growthRate",
                beautiOptions.logFileName,
                (int) (options.mleChainLength * 0.10),
                writer);
            writer.writeCloseTag(LogisticGrowthModelParser.GROWTH_RATE);
            writer.writeOpenTag(LogisticGrowthModelParser.TIME_50);
            writeParameter(
                "logisticReference.t50",
                "logistic.t50",
                beautiOptions.logFileName,
                (int) (options.mleChainLength * 0.10),
                writer);
            writer.writeCloseTag(LogisticGrowthModelParser.TIME_50);
            writer.writeCloseTag(LogisticGrowthModelParser.LOGISTIC_GROWTH_MODEL);

            writer.writeComment("A working prior for the coalescent.");
            writer.writeOpenTag(
                CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD,
                new Attribute[] {
                  new Attribute.Default<String>(XMLParser.ID, modelPrefix + "coalescentReference")
                });
            writer.writeOpenTag(CoalescentLikelihoodParser.MODEL);
            writer.writeIDref(
                LogisticGrowthModelParser.LOGISTIC_GROWTH_MODEL,
                beautiOptions.getPartitionTreePriors().get(0).getPrefix() + "constantReference");
            writer.writeCloseTag(CoalescentLikelihoodParser.MODEL);
            writer.writeOpenTag(CoalescentLikelihoodParser.POPULATION_TREE);
            writer.writeIDref(TreeModel.TREE_MODEL, modelPrefix + TreeModel.TREE_MODEL);
            writer.writeCloseTag(CoalescentLikelihoodParser.POPULATION_TREE);
            writer.writeCloseTag(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD);

            break;

          case EXPANSION:
            writer.writeComment("A working prior for the expansion growth model.");
            writer.writeOpenTag(
                ExpansionModelParser.EXPANSION_MODEL,
                new Attribute[] {
                  new Attribute.Default<String>(XMLParser.ID, modelPrefix + "expansionReference"),
                  new Attribute.Default<String>(
                      "units", Units.Utils.getDefaultUnitName(beautiOptions.units))
                });

            writer.writeOpenTag(ExpansionModelParser.POPULATION_SIZE);
            writeParameter(
                "expansionReference.popSize",
                "expansion.popSize",
                beautiOptions.logFileName,
                (int) (options.mleChainLength * 0.10),
                writer);
            writer.writeCloseTag(ExpansionModelParser.POPULATION_SIZE);
            writer.writeOpenTag(ExpansionModelParser.GROWTH_RATE);
            writeParameter(
                "expansionReference.growthRate",
                "expansion.growthRate",
                beautiOptions.logFileName,
                (int) (options.mleChainLength * 0.10),
                writer);
            writer.writeCloseTag(ExpansionModelParser.GROWTH_RATE);
            writer.writeOpenTag(ExpansionModelParser.ANCESTRAL_POPULATION_PROPORTION);
            writeParameter(
                "expansionReference.ancestralProportion",
                "expansion.ancestralProportion",
                beautiOptions.logFileName,
                (int) (options.mleChainLength * 0.10),
                writer);
            writer.writeCloseTag(ExpansionModelParser.ANCESTRAL_POPULATION_PROPORTION);
            writer.writeCloseTag(ExpansionModelParser.EXPANSION_MODEL);

            writer.writeComment("A working prior for the coalescent.");
            writer.writeOpenTag(
                CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD,
                new Attribute[] {
                  new Attribute.Default<String>(XMLParser.ID, modelPrefix + "coalescentReference")
                });
            writer.writeOpenTag(CoalescentLikelihoodParser.MODEL);
            writer.writeIDref(
                ExpansionModelParser.EXPANSION_MODEL,
                beautiOptions.getPartitionTreePriors().get(0).getPrefix() + "constantReference");
            writer.writeCloseTag(CoalescentLikelihoodParser.MODEL);
            writer.writeOpenTag(CoalescentLikelihoodParser.POPULATION_TREE);
            writer.writeIDref(TreeModel.TREE_MODEL, modelPrefix + TreeModel.TREE_MODEL);
            writer.writeCloseTag(CoalescentLikelihoodParser.POPULATION_TREE);
            writer.writeCloseTag(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD);

            break;

          default:

            // Do not switch to product of exponentials as the coalescentEventsStatistic has not
            // been logged
            // TODO: show menu that explains mismatch between prior and working prior?
            // TODO: but show it when the MCM option is wrongfully being selected, don't do anything
            // here

        }
      }

      writer.writeComment("Define marginal likelihood estimator (GSS) settings");

      List<Attribute> attributes = new ArrayList<Attribute>();
      attributes.add(
          new Attribute.Default<Integer>(
              MarginalLikelihoodEstimator.CHAIN_LENGTH, options.mleChainLength));
      attributes.add(
          new Attribute.Default<Integer>(
              MarginalLikelihoodEstimator.PATH_STEPS, options.pathSteps));
      attributes.add(
          new Attribute.Default<String>(
              MarginalLikelihoodEstimator.PATH_SCHEME, options.pathScheme));
      if (!options.pathScheme.equals(MarginalLikelihoodEstimator.LINEAR)) {
        attributes.add(
            new Attribute.Default<Double>(
                MarginalLikelihoodEstimator.ALPHA, options.schemeParameter));
      }

      writer.writeOpenTag(MarginalLikelihoodEstimator.MARGINAL_LIKELIHOOD_ESTIMATOR, attributes);

      writer.writeOpenTag("samplers");
      writer.writeIDref("mcmc", "mcmc");
      writer.writeCloseTag("samplers");

      attributes = new ArrayList<Attribute>();
      attributes.add(new Attribute.Default<String>(XMLParser.ID, "pathLikelihood"));
      writer.writeOpenTag(PathLikelihood.PATH_LIKELIHOOD, attributes);
      writer.writeOpenTag(PathLikelihood.SOURCE);
      writer.writeIDref(CompoundLikelihoodParser.POSTERIOR, CompoundLikelihoodParser.POSTERIOR);
      writer.writeCloseTag(PathLikelihood.SOURCE);
      writer.writeOpenTag(PathLikelihood.DESTINATION);
      writer.writeOpenTag(CompoundLikelihoodParser.WORKING_PRIOR);

      ArrayList<Parameter> parameters = beautiOptions.selectParameters();

      for (Parameter param : parameters) {
        if (DEBUG) {
          System.err.println(param.toString() + "   " + param.priorType.toString());
        }
        // should leave out those parameters set by the coalescent
        if (param.priorType != PriorType.NONE_TREE_PRIOR) {
          // TODO: frequencies is multidimensional, is that automatically dealt with?
          writer.writeOpenTag(
              WorkingPriorParsers.NORMAL_REFERENCE_PRIOR,
              new Attribute[] {
                new Attribute.Default<String>("fileName", beautiOptions.logFileName),
                new Attribute.Default<String>("parameterColumn", param.getName()),
                new Attribute.Default<String>("burnin", "" + beautiOptions.chainLength * 0.10)
              });
          writeParameterIdref(writer, param);
          writer.writeCloseTag(WorkingPriorParsers.NORMAL_REFERENCE_PRIOR);
        }
      }

      if (options.choiceTreeWorkingPrior.equals("Product of exponential distributions")) {
        writer.writeIDref("productOfExponentialsPosteriorMeansLoess", "exponentials");
      } else {
        writer.writeIDref(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD, "coalescentReference");
      }

      writer.writeCloseTag(CompoundLikelihoodParser.WORKING_PRIOR);
      writer.writeCloseTag(PathLikelihood.DESTINATION);
      writer.writeCloseTag(PathLikelihood.PATH_LIKELIHOOD);

      attributes = new ArrayList<Attribute>();
      attributes.add(new Attribute.Default<String>(XMLParser.ID, "MLELog"));
      attributes.add(new Attribute.Default<Integer>("logEvery", options.mleLogEvery));
      attributes.add(new Attribute.Default<String>("fileName", options.mleFileName));
      writer.writeOpenTag("log", attributes);
      writer.writeIDref("pathLikelihood", "pathLikelihood");
      writer.writeCloseTag("log");

      writer.writeCloseTag(MarginalLikelihoodEstimator.MARGINAL_LIKELIHOOD_ESTIMATOR);

      writer.writeComment("Generalized stepping-stone sampling estimator from collected samples");
      attributes = new ArrayList<Attribute>();
      attributes.add(new Attribute.Default<String>("fileName", options.mleFileName));
      writer.writeOpenTag(
          GeneralizedSteppingStoneSamplingAnalysis.GENERALIZED_STEPPING_STONE_SAMPLING_ANALYSIS,
          attributes);
      writer.writeTag(
          "sourceColumn", new Attribute.Default<String>("name", "pathLikelihood.source"), true);
      writer.writeTag(
          "destinationColumn",
          new Attribute.Default<String>("name", "pathLikelihood.destination"),
          true);
      writer.writeTag(
          "thetaColumn", new Attribute.Default<String>("name", "pathLikelihood.theta"), true);
      writer.writeCloseTag(
          GeneralizedSteppingStoneSamplingAnalysis.GENERALIZED_STEPPING_STONE_SAMPLING_ANALYSIS);
    }
  }
Esempio n. 21
0
 private boolean modelExists(String modelName) {
   HierarchicalModelComponentOptions comp =
       (HierarchicalModelComponentOptions)
           options.getComponentOptions(HierarchicalModelComponentOptions.class);
   return comp.modelExists(modelName);
 }
Esempio n. 22
0
 private void fireDataChanged() {
   options.updatePartitionAllLinks();
   frame.setDirty();
 }