/** * Receives frame and uses face recognition algorithms to set coordinates of faces * * @param originalImage * @return list of integer arrays, with coordinates and size of faces */ public static List<Integer[]> detect(IplImage originalImage) { List<Integer[]> facesList = new ArrayList<Integer[]>(); IplImage grayImage = IplImage.create(originalImage.width(), originalImage.height(), IPL_DEPTH_8U, 1); cvCvtColor(originalImage, grayImage, CV_BGR2GRAY); CvMemStorage storage = CvMemStorage.create(); opencv_objdetect.CvHaarClassifierCascade cascade = new opencv_objdetect.CvHaarClassifierCascade(cvLoad(CASCADE_FILE)); CvSeq faces = cvHaarDetectObjects(grayImage, cascade, storage, 1.1, 1, 0); Integer[] coordinates = null; for (int i = 0; i < faces.total(); i++) { CvRect r = new CvRect(cvGetSeqElem(faces, i)); coordinates = new Integer[4]; coordinates[0] = r.x(); coordinates[1] = r.y(); coordinates[2] = r.height(); coordinates[3] = r.width(); facesList.add(coordinates); } return facesList; }
public static void detect(IplImage src) { CvHaarClassifierCascade cascade = new CvHaarClassifierCascade(cvLoad(XML_FILE)); CvMemStorage storage = CvMemStorage.create(); CvSeq sign = cvHaarDetectObjects(src, cascade, storage, 1.5, 3, CV_HAAR_DO_CANNY_PRUNING); cvClearMemStorage(storage); int total_Faces = sign.total(); for (int i = 0; i < total_Faces; i++) { CvRect r = new CvRect(cvGetSeqElem(sign, i)); cvRectangle( src, cvPoint(r.x(), r.y()), cvPoint(r.width() + r.x(), r.height() + r.y()), CvScalar.RED, 2, CV_AA, 0); } cvShowImage("Result", src); cvSaveImage("D:\\asd\\a.jpg", src); cvWaitKey(0); }
public void generatePGMFromPic(String srcPath, String file, String destPath) throws Exception { String srcFilePath = srcPath + "/" + file; System.out.println("Loading image from " + srcFilePath); IplImage origImg = cvLoadImage(srcFilePath); // convert to grayscale IplImage grayImg = IplImage.create(origImg.width(), origImg.height(), IPL_DEPTH_8U, 1); cvCvtColor(origImg, grayImg, CV_BGR2GRAY); // scale the grayscale (to speed up face detection) IplImage smallImg = IplImage.create(grayImg.width() / SCALE, grayImg.height() / SCALE, IPL_DEPTH_8U, 1); cvResize(grayImg, smallImg, CV_INTER_LINEAR); // equalize the small grayscale IplImage equImg = IplImage.create(smallImg.width(), smallImg.height(), IPL_DEPTH_8U, 1); cvEqualizeHist(smallImg, equImg); CvMemStorage storage = CvMemStorage.create(); CvHaarClassifierCascade cascade = new CvHaarClassifierCascade(cvLoad(CASCADE_FILE)); System.out.println("Detecting faces..."); CvSeq faces = cvHaarDetectObjects(equImg, cascade, storage, 1.1, 3, CV_HAAR_DO_CANNY_PRUNING); cvClearMemStorage(storage); int total = faces.total(); System.out.println("Found " + total + " face(s)"); for (int i = 0; i < total; i++) { CvRect r = new CvRect(cvGetSeqElem(faces, i)); cvSetImageROI( origImg, cvRect(r.x() * SCALE, r.y() * SCALE, r.width() * SCALE, r.height() * SCALE)); IplImage origface = cvCreateImage(cvSize(r.width() * SCALE, r.height() * SCALE), 8, 3); IplImage smallface = cvCreateImage(cvSize(120, 120), 8, 3); cvCopy(origImg, origface); cvResize(origface, smallface, CV_INTER_LINEAR); cvSaveImage(destPath + "/" + file + i + ".pgm", smallface); cvResetImageROI(origImg); } }
public static void main(String[] args) throws IOException, InterruptedException, IM4JavaException, PdfException { // is - is the inputstream of the pdf file System.out.println("inside grader"); // required debugging code Mongo m = new Mongo(); DB db = m.getDB("ecomm_database"); DBCollection coll = db.getCollection("testschemas"); ObjectMapper mapper = new ObjectMapper(); // String message = "4fda1af52f910cc6200000d3"; //test id, that i will have in the real version String message = "500bb8811a316fda2400003b"; // id of second test DBObject TestObject = coll.findOne(new BasicDBObject("_id", new ObjectId(message))); // the actual mongo query System.out.println("Test Object = " + TestObject); JsonNode rootNode = mapper.readValue(TestObject.toString().getBytes("UTF-8"), JsonNode.class); JsonNode TestAnswerSheet = rootNode.get("TestAnswerSheet"); // TestAnswerSheet JsonNode Questions = rootNode.get("Questions"); System.out.println("size of Questions = " + Questions.size()); int numofquestions = Questions.size(); System.out.println("size of answers = " + TestAnswerSheet.size()); int numofstudents = rootNode.get("NumberOfStudents").getIntValue(); // grab the number of students System.out.println("Numer of students = " + numofstudents); // FillScore(Questions); // for(int x = 0; x < Answers.size(); x++){ // // int IDS = Answers.get(x).get("IDS").getIntValue(); //grab the question // String QID = new String(Answers.get(x).get("IDS").getTextValue()); //grab the question // System.out.println("IDS = " + QID ); // // }//end of grade results // JFrame frame = new JFrame(); //window popup //for debuggin // reading in file // File PDF_file = new File("/Users/angellopozo/Documents/TestImages/PDF_CRICLEV2.pdf"); /* * * Start of real code * */ // //workign with jpedal, will read from inputstream // PdfDecoder decode_pdf = new PdfDecoder(true); // try{ //// decode_pdf.openPdfFileFromInputStream(is,true); //file // decode_pdf.openPdfFile("/Users/angellopozo/Dropbox/My // Code/java/MainRabbitMongo/Resources/CreatedPDF_Mongo_Test.pdf"); ///DEUG LINE //// BufferedImage img = decode_pdf.getPageAsImage(1); //// decode_pdf.closePdfFile(); //// File fileToSave = new File("/Users/angellopozo/Dropbox/My // Code/java/MainRabbitMongo/src/main/java/RPC/jpedalRPCTEST1.jpg"); //// ImageIO.write(img, "jpg", fileToSave); //// JFrame frame = new JFrame("jpedal buffered image"); //// Panel panel = new Panel(); //// frame.getContentPane().add(new JLabel(new ImageIcon(img))); //// frame.pack(); ////// frame.setLocationRelativeTo(null); //// frame.setVisible(true); // PdfFileInformation fileinfo = decode_pdf.getFileInformationData(); // String[] Fnames = fileinfo.getFieldValues(); // for(int i = 0 ; i < Fnames.length; i++){ // System.out.println("fname info = " + Fnames[i]); // } // System.out.println("xml data = " + fileinfo.getFileXMLMetaData()); // System.out.println("name of the input stream file = " + decode_pdf.getFileName()); // } // catch(PdfException e) { // e.printStackTrace();//return back and do the rpc to the user ... use return and check // returns? // // } // File PDF_file = new File("/Users/angellopozo/Dropbox/My // Code/java/MainRabbitMongo/Resources/CreatedPDF_TestMongo_Graded.pdf"); //to large, need to do // some scaling // File PDF_file = new File("/Users/angellopozo/Dropbox/My // Code/java/MainRabbitMongo/Resources/CreatedPDF_Mongo_Test_Inputs.pdf"); //working // File PDF_file = new File("/Users/angellopozo/Dropbox/My // Code/java/MainRabbitMongo/Resources/CreatedPDF_Mongo_Grade_Random.pdf"); // File PDF_file = new File("/Users/angellopozo/Dropbox/My // Code/java/MainRabbitMongo/Resources/CreatedPDF_TestMongo_Graded_Vsmaller.pdf"); File PDF_file = new File( "/Users/angellopozo/Dropbox/My Code/java/MainRabbitMongo/Resources/CreatedPDF_Mongo_Random_withScore_testnum2_Grade_LARGE.pdf"); // File PDF_file = new File("/Users/angellopozo/Dropbox/My // Code/java/MainRabbitMongo/Resources/CreatedPDF_Mongo_Random_withScore_testnum2_Grade_LARGE_MISTAKES_doubles.pdf"); // File PDF_file = new File("/Users/angellopozo/Dropbox/My // Code/java/MainRabbitMongo/Resources/CreatedPDF_Mongo_Random_withScore_testnum2_Grade_LARGE_MISTAKES_noreply.pdf"); // just testing. I get a bufferedImageLuminanceSource.java.39 -> grabbing image file dimentions. // PdfDecoder decode_pdf = new PdfDecoder(true); // decode_pdf.openPdfFile("/Users/angellopozo/Dropbox/My // Code/java/MainRabbitMongo/Resources/CreatedPDF_Mongo_Grade_Random.pdf"); // int numpages = decode_pdf.getPageCount(); PDDocument doc = PDDocument.load(PDF_file); // used to get page numbers int numpages = doc.getNumberOfPages(); // get page numbers for for loop int[] CorrectlyAnswered = new int[Questions.size()]; // number of correct answers int[] IncorrectlyAnswered = new int[Questions.size()]; // number of incorrectly answered responses byStudent bystudent = new byStudent( numofquestions, numofstudents); // create grading instance //Initialize with number of students byQuestion byquestion = new byQuestion(numofquestions, numofstudents); System.out.println("result size = " + CorrectlyAnswered.length); // need to fill the score array in byquestions for (int i = 0; i < Questions.size(); i++) { // System.out.println("Score for this question = " + // Questions.get(i).get("Score").getDoubleValue()); byquestion.ScoreDefault[i] = Questions.get(i).get("Score").getDoubleValue(); } // end of filling score array in byquestion // int numpages = decode_pdf.getPageCount(); //get page numbers for for loop System.out.println( "number of pages = " + numpages); // check to make sure the number of pages is reasonable, dont want this to // be too large call Db and return System.out.println("____________________________________"); // JFrame frame = new JFrame(); //window popup // ArrayList Results = new ArrayList(); //Array of the answer locations // ArrayList WA = new ArrayList(); //array of wrong answers that were selected by the students // ArrayList SR = new ArrayList(); //holding accumulated data below. selected answers array int numoffails = 0; int Aindex = 0; // int Qindex = 0; int[][] Selections = new int[2][Questions.size()]; // student , question int[][] SelectionTotal = new int[Questions.size()][4]; // question, answer selected for (int i = 0; i < numpages; i++) { // for every page // File PDF_file = new File("/Users/angellopozo/Documents/TestImages/PDF_CRICLEV2.pdf"); // convert page to PDF BufferedImage PDF_img = ConvertPageToImage(PDF_file, i); // BufferedImage PDF_img = decode_pdf.getPageAsImage(i); // START creating luminance source LuminanceSource lumSource = new BufferedImageLuminanceSource(PDF_img); BinaryBitmap bitmap = new BinaryBitmap(new HybridBinarizer(lumSource)); Reader reader = new QRCodeReader(); // create qr reader GenericMultipleBarcodeReader multireader = new GenericMultipleBarcodeReader(reader); Hashtable<DecodeHintType, Object> hints = new Hashtable<DecodeHintType, Object>(); hints.put(DecodeHintType.TRY_HARDER, Boolean.TRUE); TreeMap<String, Rectangle2D> sortedBarcodeResults = new TreeMap<String, Rectangle2D>(); Result results[] = null; try { results = multireader.decodeMultiple(bitmap, hints); } catch (ReaderException re) { return; } // end of try // END creating luminance source // go through each found QR Code and draw a box around it BufferedImage outimage = PDF_img; // copy of the pdf image Graphics2D g2 = outimage.createGraphics(); g2.setColor(Color.green); g2.setStroke(new BasicStroke(3)); // draw boxes around the found qrcodes int index = 0; // debug line to save images for (Result result : results) { System.out.println("barcode result: " + result.getText()); double x1 = result.getResultPoints()[0].getX(); // top left double y1 = result.getResultPoints()[0].getY(); // top left double x2 = result.getResultPoints()[1].getX(); // top right double y2 = result.getResultPoints()[1].getY(); // top right double x3 = result.getResultPoints()[2].getX(); // bottom left double y3 = result.getResultPoints()[2].getY(); // bottom left // double x4 = result.getResultPoints()[3].getX(); //bottom right (bottom right square // location..some qr have it) // double y4 = result.getResultPoints()[3].getY(); //bottom right (bottom right square // location..some qr have it) Rectangle2D rectbox = new Rectangle2D.Double(x2, y2, (x3 - x2), (y1 - y2)); // Double buffer = 10.0;//highly dependent on the size of the qrcode // Rectangle2D rectbox = new Rectangle2D.Double(x2-buffer, y2-buffer, (x3-x2)+2*buffer, // (y1-y2)+2*buffer); // System.out.println("barcode location: " + x1 +" "+ y1 +" "+ x2 +" "+ y2 + " " + // x3 +" "+ y3); // System.out.println("barcode location: " + x3 +" "+ y3+" "+ x4+" "+ y4+"\n");// +" "+ // (x2-x1) +" "+ (y2-y1) +"\n"); sortedBarcodeResults.put( result.getText(), rectbox); // (qrdecoded string , rectangle box in pixels) g2.draw(rectbox); // draw box around qrcode Rectangle2D bubblebox = new Rectangle2D.Double( x2 + (x3 - x2) + 15, y2 - 20, 45, (y1 - y2) + 55); // box around bubbles g2.draw(bubblebox); // area that the bubbles exist in the image BufferedImage subBubble = PDF_img.getSubimage( (int) (x2 + (x3 - x2) + 15), (int) (y2 - 20), 45, (int) ((y1 - y2) + 55)); // box around bubbles IplImage ipl_subBubble = IplImage.createFrom(subBubble); // convert subimage into iplimage IplImage ipl_subBubble_large = cvCreateImage( cvSize(ipl_subBubble.width() * 4, ipl_subBubble.height() * 4), ipl_subBubble.depth(), ipl_subBubble.nChannels()); cvResize(ipl_subBubble, ipl_subBubble_large, CV_INTER_CUBIC); // enlarge image IplImage ipl_subBubble_gray = cvCreateImage( cvSize(ipl_subBubble_large.width(), ipl_subBubble_large.height()), IPL_DEPTH_8U, 1); // create black and white version of page // IplImage ipl_subBubble_gray = ipl_subBubble_large.clone(); if (ipl_subBubble_large.nChannels() > 1) { cvCvtColor(ipl_subBubble_large, ipl_subBubble_gray, CV_RGB2GRAY); } else { // IplImage ipl_subBubble_gray = ipl_subBubble_large.clone(); } cvThreshold(ipl_subBubble_gray, ipl_subBubble_gray, 100, 255, CV_THRESH_OTSU); cvSmooth(ipl_subBubble_gray, ipl_subBubble_gray, CV_GAUSSIAN, 9, 9, 2, 2); CvMemStorage circles = CvMemStorage.create(); // show bubbles, check this if no grading is working // CanvasFrame smoothed = new CanvasFrame("gray image"); // smoothed.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE); // smoothed.showImage(ipl_subBubble_gray); CvSeq seq = cvHoughCircles( ipl_subBubble_gray, circles, CV_HOUGH_GRADIENT, 1, 50, 80, 20, 32, (int) (ipl_subBubble_gray.height() / (7))); Integer[][] FilledBubbles = new Integer[4][4]; // arry holds the #of pixels seen and the y dimention of subimage // Vector<CvPoint> centers = new Vector<CvPoint>(4);//the 4 can be seq.total() for (int j = 0; j < seq.total(); j++) { // draw a circle around each circle found CvPoint3D32f xyr = new CvPoint3D32f(cvGetSeqElem(seq, j)); CvPoint center = new CvPoint(Math.round(xyr.x()), Math.round(xyr.y())); int radius = Math.round(xyr.z()); cvCircle(ipl_subBubble_large, center, 3, CvScalar.GREEN, -1, 8, 0); // center of circle cvCircle(ipl_subBubble_large, center, radius, CvScalar.BLUE, 3, 8, 0); // outer circle FilledBubbles[j][0] = FindBubbleSelected(center, radius, ipl_subBubble_gray); // bubble selected area // FilledBubbles[j][0] = 1; //here to get rid of dimensions error FilledBubbles[j][1] = Math.round(center.x()); FilledBubbles[j][2] = Math.round(center.y()); FilledBubbles[j][3] = Math.round(radius); // System.out.println("Filled bubble Count = "+ FilledBubbles[j]); } // end of look for circles for // //the algorithm may not find circles //was trying to fix an old error, solved it by // fixing th size of the image on hte pdf to image conversion // int anynull = anynulls(FilledBubbles); //// System.out.println("anynull = "+ anynull); // if(anynull == 1){ // numoffails++; // continue; //this question, not all circles were found. // }//end of null check //this means not all 4 circles were found // System.out.println("filled bubbles size = " + FilledBubbles[0].length); // System.out.println("filled bubbles size = " + FilledBubbles.length); FilledBubbles = SortbyYdimention( FilledBubbles); // note to self, check for nulls because that woud be an issue.... // print out area of bubble // for(Integer[] tp : FilledBubbles){ // System.out.println("Filled bubble Count = "+ tp[0] + " loc = "+ tp[1]); // } int[] selectResult = ReturnIndexOfmax(FilledBubbles); // maxindex = the answer submitted by the student int maxIndex = selectResult[0]; int isfound = 1; int ismulti = 0; if (selectResult[1] > 1 || selectResult[2] == 1) { // selectResult[1] = number of bubbles , selectResult[2] = no selections // made System.out.println("more than one bubble was selected"); // Aindex++; //index for looping through answer array //need to be // incremented to keep data correct // index++; //(0-number of questions) //need to be incremented to keep data // correct // numoffails++; //student selected too many inputs, hence trying to cheat // and isfound = 0; ismulti = 1; // continue; } // end of slectResults[1] if /* GRADE THE RESULTS!!! */ // TestObject =mongo query result, Aindex = question being looked at String QID = new String( TestAnswerSheet.get(Aindex).get("IDS").getTextValue()); // grab the question ID int CorrectAnswerloc = TestAnswerSheet.get(Aindex).get("Answer").getIntValue(); // correct answer location System.out.println("Correc answer location = " + CorrectAnswerloc); System.out.println("IDS = " + QID + " QI = " + Aindex); int iscorrect = 0; if (ismulti == 1) { // if multiple selected iscorrect = 0; } else { // if only one input for a question is found iscorrect = checkcorrectness(CorrectAnswerloc, maxIndex); } // create the student selections by question found BasicDBObject newvals = new BasicDBObject(); String Answersnum = new String("TestAnswerSheet." + Integer.toString(Aindex)); newvals.put(Answersnum + ".found", isfound); newvals.put(Answersnum + ".multiselect", ismulti); // newvals.put(Answersnum + ".correct", iscorrect); // newvals.put(Answersnum + ".selected", maxIndex); BasicDBObject posop = new BasicDBObject("$set", newvals); System.out.println("inc query = " + posop.toString()); coll.update(new BasicDBObject("_id", new ObjectId(message)), posop); // System.out.println("first character = " + QID.charAt(0)); // System.out.println("last character = " + QID.charAt(2)); char stud = QID.charAt(0); // this is the student //QID starts at 1, not at 0 hence the negative char Q = QID.charAt(2); // this is the question System.out.println("Student num = " + stud); System.out.println( "Q num = " + Character.getNumericValue(Q - 1)); // QID starts at 1, not at 0 hence the negative // Aggregate information to create Test Results array int Qint = Aindex % numofquestions; // Qint = the question number of the test -1(includes 0 hence the // -1) //should be equivalent to char Q // System.out.println("Score for this question = " + // Questions.get(Qint).get("Score").getDoubleValue()); if (iscorrect == 1) { System.out.println("mod result = " + Qint); System.out.println("Question = " + Qint + " is correct = " + iscorrect); CorrectlyAnswered[Qint] = CorrectlyAnswered[Qint] + 1; // byquestion.IncrementCorrectlyAnswered(Qint); byquestion.IncrementCorrectlyAnswered(Qint); bystudent.IncrementCorrectlyAnswered(Character.getNumericValue(stud)); byquestion.InsertScore(Character.getNumericValue(stud), Qint); } else if (iscorrect == 0) { // wrong answer was selected // Selections // or multiple selections System.out.println("mod result = " + Qint); System.out.println("Question = " + Qint + " is Incorrect = " + iscorrect); IncorrectlyAnswered[Qint] = IncorrectlyAnswered[Qint] + 1; // byquestion.IncrementCorrectlyAnswered(Qint); byquestion.IncrementIncorrectlyAnswered(Qint); bystudent.IncrementIncorrectlyAnswered(Character.getNumericValue(stud)); } byquestion.IncrementSelectedAnswer( maxIndex, Qint); // increment the number of times a selection was made Selections[Character.getNumericValue(stud)][Qint] = maxIndex; SelectionTotal[Qint][maxIndex] = SelectionTotal[Qint][maxIndex] + 1; // byquestion.IncrementSelectedWrongAnwer(Qint, maxIndex); bystudent.IncrementRepliedTo(Character.getNumericValue(stud)); Aindex++; // index for looping through answer array /* END GRADE THE RESULTS!!! */ // TestObject // draw the red circles CvPoint slectedcenter = new CvPoint( FilledBubbles[maxIndex][1].intValue(), FilledBubbles[maxIndex][2].intValue()); cvCircle( ipl_subBubble_large, slectedcenter, FilledBubbles[maxIndex][3].intValue(), CvScalar.RED, 3, 8, 0); // saving subimages to i can debug results // String subimagename = new String("subimage_"+i+"_"+index+".jpg"); index++; // (0-number of questions) // cvSaveImage(subimagename,ipl_subBubble_large); // create image window named "My Image" // String que = new String("_for_"+ result.getText()); // final CanvasFrame canvas = new CanvasFrame("Bubbles_Found"+que); // // request closing of the application when the image window is closed // canvas.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE); // // show image on window // canvas.showImage(ipl_subBubble_large); System.out.println("____________________________________"); } // end of for results loop // end drawing boxes around each QR CODE // //START code to display in JFRAME // if(i == 0){ // frame.getContentPane().setLayout(new FlowLayout()); // frame.getContentPane().add(new JLabel(new ImageIcon(outimage))); // frame.pack(); // frame.setVisible(true); // } // else { // // frame.getContentPane().add(new JLabel(new ImageIcon(outimage))); // frame.pack(); // frame.setVisible(true); // // } // //END code to display in JFRAME } // end of for loop of pages // putput how well teh students performed on test for (int i = 0; i < numofstudents; i++) { System.out.println( "student" + i + "answered Correctly: " + bystudent.CorrectlyAnswered[i] + " Questions"); System.out.println( "student" + i + "answered Incorrectly: " + bystudent.IncorrectlyAnswered[i] + " Questions"); System.out.println("student" + i + "answered: " + bystudent.RepliedTo[i] + " Questions"); } // results by student and question for (int i = 0; i < Selections.length; i++) { for (int j = 0; j < Selections[0].length; j++) { System.out.println("Student (" + i + "," + j + ") selected = " + Selections[i][j]); } } // results by question and reply for (int i = 0; i < SelectionTotal.length; i++) { System.out.println( "Selection below = " + byquestion.SelectedWrongAnswer_0[i] + " " + byquestion.SelectedWrongAnswer_1[i] + " " + byquestion.SelectedWrongAnswer_2[i] + " " + byquestion.SelectedCorrectAnswer[i] + " "); System.out.println( "correctly answered = " + byquestion.CorrectlyAnswered[i] + " " + CorrectlyAnswered[i]); for (int j = 0; j < SelectionTotal[0].length; j++) { System.out.println("Quesetion (" + i + "," + j + ") selected = " + SelectionTotal[i][j]); } } // end of selctiontotal for loop byquestion.ComputePercentCorrectlyAnswered(); byquestion.ComputePercentIncorrectlyAnswered(); byquestion.ComputePercentCorrectSTD(); byquestion.ComputeMeanScoreByQuestion(); // average score for any question by question // byquestion.ComputeMeanScoreByStudent(); //average score for any one question by student byquestion.ComputeMeanbyQuestionSTD(); bystudent.ComputeTotalScores( byquestion.Scoresbystudent); // compute the total scores for any student bystudent.ComputeMeanTotalScore(byquestion.Scoresbystudent); byTest bytest = new byTest(numofquestions, numofstudents, bystudent); bytest.ComputeMeanScoreTest(); bytest.ComputeMeanScoreSTD(); bytest.ComputePercentCorrecltyAnswered(); bytest.ComputePercentIncorrecltyAnswered(); // create Test Results by question ArrayList<BasicDBObject> TestResultbyQuestion = new ArrayList<BasicDBObject>(); // Array of the answer locations for (int j = 0; j < byquestion.CorrectlyAnswered.length; j++) { BasicDBObject ByQuestionVals = new BasicDBObject(); ByQuestionVals.put("SelectedWrongAnswer_0", byquestion.SelectedWrongAnswer_0[j]); ByQuestionVals.put("SelectedWrongAnswer_1", byquestion.SelectedWrongAnswer_1[j]); ByQuestionVals.put("SelectedWrongAnswer_2", byquestion.SelectedWrongAnswer_2[j]); ByQuestionVals.put("SelectedCorrectAnswer", byquestion.SelectedCorrectAnswer[j]); ByQuestionVals.put("CorrectlyAnswered", byquestion.CorrectlyAnswered[j]); ByQuestionVals.put("IncorrectlyAnswered", byquestion.IncorrectlyAnswered[j]); ByQuestionVals.put("PercentCorrect", byquestion.PercentCorrectlyAnswered[j]); ByQuestionVals.put("PercentIncorrect", byquestion.PercentIncorrectlyAnswered[j]); ByQuestionVals.put("STD", byquestion.STD[j]); ByQuestionVals.put("Mean", byquestion.ScoreMean[j]); // means score for this question ByQuestionVals.put("_id", new ObjectId()); TestResultbyQuestion.add(ByQuestionVals); // add Rvals into the Testresultarray listarray // System.out.println("Question " + j + " numcorrect = " + CorrectlyAnswered[j]); } // create Test Results by test BasicDBObject ByTestVals = new BasicDBObject(); ByTestVals.put("Mean", bytest.ScoreMean); ByTestVals.put("STD", bytest.ScoreSTD); ByTestVals.put("PercentCorrect", bytest.PercentCorrectlyAnswered); ByTestVals.put("PercentInorrect", bytest.PercentIncorrectlyAnswered); ByTestVals.put("_id", new ObjectId()); // create graded exists BasicDBObject TestGradedVals = new BasicDBObject(); TestGradedVals.put("WasGraded", 1); Date now = new Date(); TestGradedVals.put("GradeOn", now); TestGradedVals.put("_id", new ObjectId()); // create Test Results by student ArrayList<BasicDBObject> TestResultbyStudent = new ArrayList<BasicDBObject>(); // Array of the answers by student for (int j = 0; j < bystudent.CorrectlyAnswered.length; j++) { BasicDBObject ByStudentVals = new BasicDBObject(); ByStudentVals.put("CorrectlyAnswered", bystudent.CorrectlyAnswered[j]); ByStudentVals.put("IncorrectlyAnswered", bystudent.IncorrectlyAnswered[j]); ByStudentVals.put("RepliedTo", bystudent.RepliedTo[j]); ByStudentVals.put("ScoreTotal", bystudent.ScoreTotal[j]); // ByStudentVals.put("ScoreMean", bystudent.ScoreMean[j]); //this is still wrong, unless i // want ot show the mean of score for any 1 question ByStudentVals.put("_id", new ObjectId()); TestResultbyStudent.add(ByStudentVals); // add Rvals into the Testresultarray listarray // System.out.println("Question " + j + " numcorrect = " + CorrectlyAnswered[j]); } // v1 BasicDBObject TRbyQuestions = new BasicDBObject("TRbyQuestions", TestResultbyQuestion); BasicDBObject set = new BasicDBObject("$set", TRbyQuestions); // System.out.println("Test result query = " + TRbyQuestions); coll.update(new BasicDBObject("_id", new ObjectId(message)), set); BasicDBObject TRbyTest = new BasicDBObject("TRbyTest", ByTestVals); BasicDBObject settest = new BasicDBObject("$set", TRbyTest); coll.update(new BasicDBObject("_id", new ObjectId(message)), settest); BasicDBObject TestGradedobject = new BasicDBObject("TestGraded", TestGradedVals); BasicDBObject settestgraded = new BasicDBObject("$set", TestGradedobject); coll.update(new BasicDBObject("_id", new ObjectId(message)), settestgraded); BasicDBObject TRbyStudent = new BasicDBObject("TRbyStudents", TestResultbyStudent); BasicDBObject set1 = new BasicDBObject("$set", TRbyStudent); coll.update(new BasicDBObject("_id", new ObjectId(message)), set1); // v2 // DBObject TestObject2 = coll.findOne(new BasicDBObject("_id", new ObjectId(message))); //the // actual mongo query // TestObject2.put("CorrectlyAnswered", TestResultsarray); // coll.save(TestObject2); System.out.println("Failed to grade " + numoffails + " questions"); doc.close(); } // end of Grader
/** usage: java HoughLines imageDir\imageName TransformType */ public static void main(String[] args) { String fileName = args.length >= 1 ? args[0] : "pic1.png"; // if no params provided, compute the defaut image IplImage src = cvLoadImage(fileName, 0); IplImage dst; IplImage colorDst; CvMemStorage storage = cvCreateMemStorage(0); CvSeq lines = new CvSeq(); CanvasFrame source = new CanvasFrame("Source"); CanvasFrame hough = new CanvasFrame("Hough"); if (src == null) { System.out.println("Couldn't load source image."); return; } dst = cvCreateImage(cvGetSize(src), src.depth(), 1); colorDst = cvCreateImage(cvGetSize(src), src.depth(), 3); cvCanny(src, dst, 50, 200, 3); cvCvtColor(dst, colorDst, CV_GRAY2BGR); /* * apply the probabilistic hough transform * which returns for each line deteced two points ((x1, y1); (x2,y2)) * defining the detected segment */ if (args.length == 2 && args[1].contentEquals("probabilistic")) { System.out.println("Using the Probabilistic Hough Transform"); lines = cvHoughLines2(dst, storage, CV_HOUGH_PROBABILISTIC, 1, Math.PI / 180, 40, 50, 10); for (int i = 0; i <= lines.total(); i++) { // from JavaCPP, the equivalent of the C code: // CvPoint* line = (CvPoint*)cvGetSeqElem(lines,i); // CvPoint first=line[0], second=line[1] // is: // CvPoint first=line.position(0), secon=line.position(1); Pointer line = cvGetSeqElem(lines, i); CvPoint pt1 = new CvPoint(line).position(0); CvPoint pt2 = new CvPoint(line).position(1); System.out.println("Line spotted: "); System.out.println("\t pt1: " + pt1); System.out.println("\t pt2: " + pt2); cvLine(colorDst, pt1, pt2, CV_RGB(255, 0, 0), 3, CV_AA, 0); // draw the segment on the image } } /* * Apply the multiscale hough transform which returns for each line two float parameters (rho, theta) * rho: distance from the origin of the image to the line * theta: angle between the x-axis and the normal line of the detected line */ else if (args.length == 2 && args[1].contentEquals("multiscale")) { System.out.println("Using the multiscale Hough Transform"); // lines = cvHoughLines2(dst, storage, CV_HOUGH_MULTI_SCALE, 1, Math.PI / 180, 40, 1, 1); for (int i = 0; i < lines.total(); i++) { CvPoint2D32f point = new CvPoint2D32f(cvGetSeqElem(lines, i)); float rho = point.x(); float theta = point.y(); double a = Math.cos((double) theta), b = Math.sin((double) theta); double x0 = a * rho, y0 = b * rho; CvPoint pt1 = new CvPoint((int) Math.round(x0 + 1000 * (-b)), (int) Math.round(y0 + 1000 * (a))), pt2 = new CvPoint((int) Math.round(x0 - 1000 * (-b)), (int) Math.round(y0 - 1000 * (a))); System.out.println("Line spoted: "); System.out.println("\t rho= " + rho); System.out.println("\t theta= " + theta); cvLine(colorDst, pt1, pt2, CV_RGB(255, 0, 0), 3, CV_AA, 0); } } /* * Default: apply the standard hough transform. Outputs: same as the multiscale output. */ else { System.out.println("Using the Standard Hough Transform"); lines = cvHoughLines2(dst, storage, CV_HOUGH_STANDARD, 1, Math.PI / 180, 90, 0, 0); for (int i = 0; i < lines.total(); i++) { CvPoint2D32f point = new CvPoint2D32f(cvGetSeqElem(lines, i)); float rho = point.x(); float theta = point.y(); double a = Math.cos((double) theta), b = Math.sin((double) theta); double x0 = a * rho, y0 = b * rho; CvPoint pt1 = new CvPoint((int) Math.round(x0 + 1000 * (-b)), (int) Math.round(y0 + 1000 * (a))), pt2 = new CvPoint((int) Math.round(x0 - 1000 * (-b)), (int) Math.round(y0 - 1000 * (a))); System.out.println("Line spotted: "); System.out.println("\t rho= " + rho); System.out.println("\t theta= " + theta); cvLine(colorDst, pt1, pt2, CV_RGB(255, 0, 0), 3, CV_AA, 0); } } source.showImage(src); hough.showImage(colorDst); source.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); hough.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); }
public IplImage DetectFaces(IplImage image) throws Exception { // Converts the image to gray scale for detection to work, using the same dimensions as the // original. IplImage grayImage = IplImage.createFrom(convertColorToGray(image.getBufferedImage())); CvMemStorage storage = CvMemStorage.create(); // Using the cascade file, this creates a classification for what objects to detect. In our case // it is the anterior of the face. CvHaarClassifierCascade classifier = new CvHaarClassifierCascade(cvLoad(CASCADE_FILE)); // Detect Haar-like objects, depending on the classifier. In this case we use a classifier for // detecting the anterior of the face. CvSeq faces = cvHaarDetectObjects(grayImage, classifier, storage, 1.1, 1, 0); // Initialize the static variables in FaceScanner for determining the area to crop the largest // detected face. FaceScanner.height = 0; FaceScanner.width = 0; FaceScanner.x = 0; FaceScanner.y = 0; // Loop through all detected faces and save the largest (closest) face. for (int i = 0; i < faces.total(); i++) { CvRect rect = new CvRect(cvGetSeqElem(faces, i)); if (FaceScanner.width < rect.width()) { FaceScanner.width = rect.width(); FaceScanner.height = rect.height(); FaceScanner.x = rect.x(); FaceScanner.y = rect.y(); } if (FaceScanner.displayRects) { /*Uncomment to draw the rectangles around the detected faces.*/ // if(rect.width() > 130 && rect.height() > 130){ // Draw a square around the detected face. cvRectangle( image, cvPoint(rect.x(), rect.y()), cvPoint(rect.x() + rect.width(), rect.y() + rect.height()), CvScalar.GREEN, 2, CV_AA, 0); // } /*-----------------------------------------------------------*/ } } // Checks that there was a detected face in the image before saving. Also, the detected "face" // must be large enough to be considered // a detected face. This is to limit the amount of erroneous detections. This saves the full // size image with detections drawn on // whole image before cropping. if (!(FaceScanner.height == 0 && FaceScanner.width == 0) && !(FaceScanner.height < 130 && FaceScanner.width < 130)) { // Save the image with rectangles. // cvSaveImage(filename.replace(".png", "-Rect.png"), image); } else { return null; } return image; }