CalculationThread( int i, LinkedBlockingQueue<WorkPackage> packageQueue, LinkedBlockingQueue<WorkPackage> resultQueue, TriTyperExpressionData[] expressiondata, DoubleMatrixDataset<String, String>[] covariates, IntMatrix2D probeTranslationTable, int[][] expressionToGenotypeIds, Settings settings, EQTLPlotter plotter, boolean binaryoutput, boolean useAbsoluteZScores, boolean testSNPsPresentInBothDatasets) { // m_binaryoutput = binaryoutput; m_name = i; m_workpackage_queue = packageQueue; m_result_queue = resultQueue; m_probeTranslation = probeTranslationTable; m_expressiondata = expressiondata; boolean m_cis = settings.cisAnalysis; boolean m_trans = settings.transAnalysis; metaAnalyseInteractionTerms = settings.metaAnalyseInteractionTerms; metaAnalyseModelCorrelationYHat = settings.metaAnalyseModelCorrelationYHat; m_useAbsoluteZScores = useAbsoluteZScores; m_name = i; m_numProbes = m_probeTranslation.columns(); m_numDatasets = m_probeTranslation.rows(); m_expressionToGenotypeIds = expressionToGenotypeIds; // probeVariance = new double[m_numDatasets][0]; // probeMean = new double[m_numDatasets][0]; // probeName = new String[m_numDatasets][0]; // for (int d = 0; d < m_numDatasets; d++) { // probeVariance[d] = expressiondata[d].getProbeVariance(); // probeMean[d] = expressiondata[d].getProbeMean(); // probeName[d] = expressiondata[d].getProbes(); // } m_covariates = covariates; this.testSNPsPresentInBothDatasets = testSNPsPresentInBothDatasets; cisOnly = false; // cisTrans = false; transOnly = false; determinebeta = settings.provideBetasAndStandardErrors; determinefoldchange = settings.provideFoldChangeData; if (m_cis && !m_trans) { cisOnly = true; } else if (!m_cis && m_trans) { transOnly = true; } // else if (m_cis && m_trans) { // cisTrans = true; // } m_eQTLPlotter = plotter; m_pvaluePlotThreshold = settings.plotOutputPValueCutOff; // if (covariates != null) { // try { // rConnection = new RConnection(); // REXP x = rConnection.eval("R.version.string"); // System.out.println("Thread made R Connection: " + x.asString()); //// rConnection.voidEval("install.packages('sandwich')"); // rConnection.voidEval("library(sandwich)"); // } catch (RserveException ex) { // Logger.getLogger(CalculationThread.class.getName()).log(Level.SEVERE, null, // ex); // rConnection = null; // } catch (REXPMismatchException ex) { // Logger.getLogger(CalculationThread.class.getName()).log(Level.SEVERE, null, // ex); // rConnection = null; // } // } }
private void analyze(WorkPackage wp) { testsPerformed = 0; currentWP = wp; wp.setNumTested(0); // RunTimer t1 = new RunTimer(); // load SNP genotypes SNP[] snps = wp.getSnps(); int[] probes = wp.getProbes(); Result dsResults = null; double[] snpvariances = new double[m_numDatasets]; double[][] snpmeancorrectedgenotypes = new double[m_numDatasets][0]; double[][] originalgenotypes = new double[m_numDatasets][0]; boolean[][] includeExpressionSample = new boolean[m_numDatasets][0]; for (int d = 0; d < m_numDatasets; d++) { SNP dSNP = snps[d]; if (dSNP != null) { double[] x = dSNP.selectGenotypes(m_expressionToGenotypeIds[d], false, true); originalgenotypes[d] = dSNP.selectGenotypes(m_expressionToGenotypeIds[d], false, false); int xLen = x.length; double meanX = JSci.maths.ArrayMath.mean(x); snpmeancorrectedgenotypes[d] = new double[xLen]; for (int i = 0; i < xLen; i++) { snpmeancorrectedgenotypes[d][i] = x[i] - meanX; } double varianceX = JSci.maths.ArrayMath.variance(x); if (varianceX != 0) { snpvariances[d] = varianceX; int inds[] = m_expressionToGenotypeIds[d]; int sampleCount = m_expressionToGenotypeIds[d].length; includeExpressionSample[d] = new boolean[sampleCount]; byte[] genotypes = dSNP.getGenotypes(); for (int s = 0; s < sampleCount; s++) { int ind = inds[s]; double valX = genotypes[ind]; // loadedSNPGenotype[ind]; if (valX != -1) { includeExpressionSample[d][s] = true; } else { includeExpressionSample[d][s] = false; } } } else { dSNP.clearGenotypes(); dSNP = null; wp.getFlipSNPAlleles()[d] = null; snps[d] = null; } } } if (cisOnly) { dsResults = new Result(m_numDatasets, wp.getProbes().length, wp.getId()); for (int d = 0; d < m_numDatasets; d++) { SNP dSNP = snps[d]; if (dSNP != null) { dsResults.numSamples[d] = snpmeancorrectedgenotypes[d].length; double[][] rawData = m_expressiondata[d].getMatrix(); double[] varY = m_expressiondata[d].getProbeVariance(); double[] meanY = m_expressiondata[d].getProbeMean(); int samplecount = m_expressiondata[d].getIndividuals().length; double[][] covariates = null; if (m_covariates != null) { DoubleMatrixDataset<String, String> covariateData = m_covariates[d]; covariates = covariateData.rawData; } for (int p = 0; p < probes.length; p++) { int pid = probes[p]; Integer probeId = m_probeTranslation.get(d, pid); if (probeId != -9) { test( d, p, probeId, snpmeancorrectedgenotypes[d], originalgenotypes[d], snpvariances[d], varY[probeId], meanY[probeId], includeExpressionSample[d], samplecount, rawData, covariates, dsResults, this.currentWP, this.metaAnalyseModelCorrelationYHat, this.metaAnalyseInteractionTerms, this.determinefoldchange); } else { dsResults.correlations[d][p] = Double.NaN; dsResults.zscores[d][p] = Double.NaN; } } } else { for (int p = 0; p < probes.length; p++) { dsResults.correlations[d][p] = Double.NaN; dsResults.zscores[d][p] = Double.NaN; } } } } else if (transOnly) { HashSet<Integer> probestoExclude = null; if (probes != null) { probestoExclude = new HashSet<Integer>(); for (int p = 0; p < probes.length; p++) { probestoExclude.add(probes[p]); } } dsResults = new Result(m_numDatasets, m_numProbes, wp.getId()); for (int d = 0; d < m_numDatasets; d++) { SNP dSNP = snps[d]; dsResults.numSamples[d] = snpmeancorrectedgenotypes[d].length; double[][] rawData = m_expressiondata[d].getMatrix(); double[] varY = m_expressiondata[d].getProbeVariance(); double[] meanY = m_expressiondata[d].getProbeMean(); int samplecount = m_expressiondata[d].getIndividuals().length; if (dSNP != null) { dsResults.numSamples[d] = snpmeancorrectedgenotypes[d].length; for (int pid = 0; pid < m_numProbes; pid++) { if (probestoExclude == null || !probestoExclude.contains(pid)) { Integer probeId = m_probeTranslation.get(d, pid); if (probeId != -9) { test( d, pid, probeId, snpmeancorrectedgenotypes[d], originalgenotypes[d], snpvariances[d], varY[probeId], meanY[probeId], includeExpressionSample[d], samplecount, rawData, null, dsResults, this.currentWP, this.metaAnalyseModelCorrelationYHat, this.metaAnalyseInteractionTerms, this.determinefoldchange); } else { dsResults.correlations[d][pid] = Double.NaN; dsResults.zscores[d][pid] = Double.NaN; } } else { dsResults.correlations[d][pid] = Double.NaN; dsResults.zscores[d][pid] = Double.NaN; } } } else { for (int p = 0; p < m_numProbes; p++) { dsResults.correlations[d][p] = Double.NaN; dsResults.zscores[d][p] = Double.NaN; } } } } else { dsResults = new Result(m_numDatasets, m_numProbes, wp.getId()); for (int d = 0; d < m_numDatasets; d++) { SNP dSNP = snps[d]; dsResults.numSamples[d] = snpmeancorrectedgenotypes[d].length; double[][] rawData = m_expressiondata[d].getMatrix(); double[] varY = m_expressiondata[d].getProbeVariance(); double[] meanY = m_expressiondata[d].getProbeMean(); int samplecount = m_expressiondata[d].getIndividuals().length; if (dSNP != null) { dsResults.numSamples[d] = snpmeancorrectedgenotypes[d].length; // RunTimer t2 = new RunTimer(); for (int pid = 0; pid < m_numProbes; pid++) { Integer probeId = m_probeTranslation.get(d, pid); if (probeId != -9) { test( d, pid, probeId, snpmeancorrectedgenotypes[d], originalgenotypes[d], snpvariances[d], varY[probeId], meanY[probeId], includeExpressionSample[d], samplecount, rawData, null, dsResults, this.currentWP, this.metaAnalyseModelCorrelationYHat, this.metaAnalyseInteractionTerms, this.determinefoldchange); } else { dsResults.correlations[d][pid] = Double.NaN; dsResults.zscores[d][pid] = Double.NaN; } } // System.out.println("Test: "+t2.getTimeDesc()); } else { for (int p = 0; p < m_numProbes; p++) { dsResults.correlations[d][p] = Double.NaN; dsResults.zscores[d][p] = Double.NaN; } } } } convertResultsToPValues(wp, dsResults); if (m_eQTLPlotter != null) { for (int p = 0; p < dsResults.pvalues.length; p++) { double pval = dsResults.pvalues[p]; if (!Double.isNaN(pval)) { if (pval < m_pvaluePlotThreshold) { ploteQTL(wp, p); } } } } snps = wp.getSnps(); if (snps != null) { for (SNP snp : snps) { if (snp != null) { snp.clearGenotypes(); } } } // if result output is binary, convert to bytes and deflate the set of bytes. // if (m_binaryoutput) { // deflateResults(wp); // } // now push the results in the queue.. try { wp.setNumTested(testsPerformed); m_result_queue.put(wp); } catch (InterruptedException e) { e.printStackTrace(); } // System.out.println("Analyze: "+t1.getTimeDesc()); }