/** Process support vectors until converge. */ public void finish() { if (k == 2) { svm.finish(); } else { List<ProcessTask> tasks = new ArrayList<ProcessTask>(svms.size()); for (LASVM s : svms) { tasks.add(new ProcessTask(s)); } try { MulticoreExecutor.run(tasks); } catch (Exception e) { System.err.println(e.getMessage()); } } }
/** * Trains the SVM with the given dataset for one epoch. The caller may call this method multiple * times to obtain better accuracy although one epoch is usually sufficient. After calling this * method sufficient times (usually 1 or 2), the users should call {@link #finalize()} to further * process support vectors. * * @param x training instances. * @param y training labels in [0, k), where k is the number of classes. * @param weight instance weight. Must be positive. The soft margin penalty parameter for instance * i will be weight[i] * C. */ @SuppressWarnings("unchecked") public void Learn(T[] x, int[] y, double[] weight) { if (x.length != y.length) { throw new IllegalArgumentException( String.format("The sizes of X and Y don't match: %d != %d", x.length, y.length)); } if (weight != null && x.length != weight.length) { throw new IllegalArgumentException( String.format( "The sizes of X and instance weight don't match: %d != %d", x.length, weight.length)); } int miny = Matrix.Min(y); if (miny < 0) { throw new IllegalArgumentException("Negative class label:" + miny); } int maxy = Matrix.Max(y); if (maxy >= k) { throw new IllegalArgumentException("Invalid class label:" + maxy); } if (k == 2) { int[] yi = new int[y.length]; for (int i = 0; i < y.length; i++) { if (y[i] == 1) { yi[i] = +1; } else { yi[i] = -1; } } if (weight == null) { svm.learn(x, yi); } else { svm.learn(x, yi, weight); } } else if (strategy == Multiclass.ONE_VS_ALL) { List<TrainingTask> tasks = new ArrayList<TrainingTask>(k); for (int i = 0; i < k; i++) { int[] yi = new int[y.length]; double[] w = wi == null ? weight : new double[y.length]; for (int l = 0; l < y.length; l++) { if (y[l] == i) { yi[l] = +1; } else { yi[l] = -1; } if (wi != null) { w[l] = wi[y[l]]; if (weight != null) { w[l] *= weight[l]; } } } tasks.add(new TrainingTask(svms.get(i), x, yi, w)); } try { MulticoreExecutor.run(tasks); } catch (Exception e) { System.err.println(e.getMessage()); } } else { List<TrainingTask> tasks = new ArrayList<TrainingTask>(k * (k - 1) / 2); for (int i = 0, m = 0; i < k; i++) { for (int j = i + 1; j < k; j++, m++) { int n = 0; for (int l = 0; l < y.length; l++) { if (y[l] == i || y[l] == j) { n++; } } T[] xij = (T[]) java.lang.reflect.Array.newInstance(x.getClass().getComponentType(), n); int[] yij = new int[n]; double[] wij = weight == null ? null : new double[n]; for (int l = 0, q = 0; l < y.length; l++) { if (y[l] == i) { xij[q] = x[l]; yij[q] = +1; if (weight != null) { wij[q] = weight[l]; } q++; } else if (y[l] == j) { xij[q] = x[l]; yij[q] = -1; if (weight != null) { wij[q] = weight[l]; } q++; } } tasks.add(new TrainingTask(svms.get(m), xij, yij, wij)); } } try { MulticoreExecutor.run(tasks); } catch (Exception e) { System.err.println(e.getMessage()); } } }