/** See how well it processes an image which is not an GrayS32 */
  @Test
  public void checkOtherType() {
    GrayS32 orig = new GrayS32(width, height);
    GImageMiscOps.fillUniform(orig, rand, 0, 20);
    GrayU8 orig8 = ConvertImage.convert(orig, (GrayU8) null);

    int N = 3;
    ImageDimension dimen = UtilWavelet.transformDimension(orig, N);

    GrayS32 found = new GrayS32(dimen.width, dimen.height);
    GrayS32 expected = new GrayS32(dimen.width, dimen.height);

    WaveletDescription<WlCoef_I32> desc =
        FactoryWaveletDaub.biorthogonal_I32(5, BorderType.REFLECT);

    GrayS32 storage = new GrayS32(dimen.width, dimen.height);
    WaveletTransformOps.transformN(desc, orig.clone(), expected, storage, N);

    WaveletTransformInt<GrayU8> alg = new WaveletTransformInt<>(desc, N, 0, 255, GrayU8.class);
    alg.transform(orig8, found);

    // see if the two techniques produced the same results
    BoofTesting.assertEquals(expected, found, 0);

    // see if it can convert it back
    GrayU8 reconstructed = new GrayU8(width, height);
    alg.invert(found, reconstructed);
    BoofTesting.assertEquals(orig8, reconstructed, 0);
    // make sure the input has not been modified
    BoofTesting.assertEquals(expected, found, 0);
  }
  @Test
  public void compareToWaveletTransformOps() {
    GrayS32 orig = new GrayS32(width, height);
    GImageMiscOps.fillUniform(orig, rand, 0, 20);
    GrayS32 origCopy = orig.clone();

    int N = 3;
    ImageDimension dimen = UtilWavelet.transformDimension(orig, N);

    GrayS32 found = new GrayS32(dimen.width, dimen.height);
    GrayS32 expected = new GrayS32(dimen.width, dimen.height);

    WaveletDescription<WlCoef_I32> desc =
        FactoryWaveletDaub.biorthogonal_I32(5, BorderType.REFLECT);

    GrayS32 storage = new GrayS32(dimen.width, dimen.height);
    WaveletTransformOps.transformN(desc, orig.clone(), expected, storage, N);

    WaveletTransformInt<GrayS32> alg = new WaveletTransformInt<>(desc, N, 0, 255, GrayS32.class);
    alg.transform(orig, found);

    // make sure the original input was not modified like it is in WaveletTransformOps
    BoofTesting.assertEquals(origCopy, orig, 0);
    // see if the two techniques produced the same results
    BoofTesting.assertEquals(expected, found, 0);

    // test inverse transform
    GrayS32 reconstructed = new GrayS32(width, height);
    alg.invert(found, reconstructed);
    BoofTesting.assertEquals(orig, reconstructed, 0);
    // make sure the input has not been modified
    BoofTesting.assertEquals(expected, found, 0);
  }
  public static <T extends ImageSingleBand> T createSingleBand(
      Class<T> type, int width, int height) {
    type = BoofTesting.convertGenericToSpecificType(type);

    if (type == ImageUInt8.class) {
      return (T) new ImageUInt8(width, height);
    } else if (type == ImageSInt8.class) {
      return (T) new ImageSInt8(width, height);
    } else if (type == ImageSInt16.class) {
      return (T) new ImageSInt16(width, height);
    } else if (type == ImageUInt16.class) {
      return (T) new ImageUInt16(width, height);
    } else if (type == ImageSInt32.class) {
      return (T) new ImageSInt32(width, height);
    } else if (type == ImageSInt64.class) {
      return (T) new ImageSInt64(width, height);
    } else if (type == ImageFloat32.class) {
      return (T) new ImageFloat32(width, height);
    } else if (type == ImageFloat64.class) {
      return (T) new ImageFloat64(width, height);
    } else if (type == ImageInteger.class) {
      // ImageInteger is a generic type, so just create something
      return (T) new ImageSInt32(width, height);
    }
    throw new RuntimeException("Unknown type: " + type.getSimpleName());
  }
  /** See if accessing the image edge causes it to blow up. */
  @Test
  public void get_edges() {
    T img = createImage(width, height);
    GImageMiscOps.fillUniform(img, rand, 0, 100);

    BoofTesting.checkSubImage(this, "get_edges", false, img);
  }
  /** The XY and YX second derivatives should be indential */
  private void testSecondDerivative(Method m1, Method m2) {
    Class params[] = m1.getParameterTypes();
    ImageGray input = GeneralizedImageOps.createSingleBand(params[0], width, height);
    ImageGray derivX = GeneralizedImageOps.createSingleBand(params[1], width, height);
    ImageGray derivY = GeneralizedImageOps.createSingleBand(params[2], width, height);
    ImageGray derivXX = GeneralizedImageOps.createSingleBand(params[1], width, height);
    ImageGray derivYY = GeneralizedImageOps.createSingleBand(params[2], width, height);
    ImageGray derivXY = GeneralizedImageOps.createSingleBand(params[1], width, height);
    ImageGray derivYX = GeneralizedImageOps.createSingleBand(params[1], width, height);

    GImageMiscOps.fillUniform(input, rand, 0, 40);

    Object border;
    if (params[3] == ImageBorder_F32.class) {
      border = new ImageBorder1D_F32(BorderIndex1D_Wrap.class);
    } else {
      border = new ImageBorder1D_S32(BorderIndex1D_Wrap.class);
    }

    try {
      m1.invoke(null, input, derivX, derivY, border);
      m2.invoke(null, derivX, derivXX, derivXY, border);
      m2.invoke(null, derivY, derivYX, derivYY, border);
    } catch (IllegalAccessException | InvocationTargetException e) {
      throw new RuntimeException(e);
    }

    //		BoofTesting.printDiff(derivXY,derivYX);
    BoofTesting.assertEquals(derivXY, derivYX, 1e-3f);
  }
  /**
   * Creates a random image and looks for corners in it. Sees if the naive and fast algorithm
   * produce exactly the same results.
   */
  @Test
  public void compareToNaive() {
    GrayU8 img = new GrayU8(width, height);
    ImageMiscOps.fillUniform(img, new Random(0xfeed), 0, 100);

    GrayS16 derivX = new GrayS16(img.getWidth(), img.getHeight());
    GrayS16 derivY = new GrayS16(img.getWidth(), img.getHeight());

    GradientSobel.process(img, derivX, derivY, new ImageBorder1D_S32(BorderIndex1D_Extend.class));

    BoofTesting.checkSubImage(this, "compareToNaive", true, derivX, derivY);
  }
  public static void applyInnerMethod(
      String functionName,
      WaveletDescription<?> desc,
      ImageSingleBand input,
      ImageSingleBand output) {

    Method m;
    Object args[];
    if (functionName.contains("Inverse")) {
      WlCoef coef = desc.getInverse().getInnerCoefficients();
      m =
          BoofTesting.findMethod(
              ImplWaveletTransformInner.class,
              functionName,
              coef.getClass(),
              input.getClass(),
              output.getClass());
      args = new Object[] {coef, input, output};
    } else {
      WlCoef coef = desc.getForward();
      m =
          BoofTesting.findMethod(
              ImplWaveletTransformInner.class,
              functionName,
              coef.getClass(),
              input.getClass(),
              output.getClass());
      args = new Object[] {coef, input, output};
    }

    try {
      m.invoke(null, args);
    } catch (InvocationTargetException e) {
      throw new RuntimeException(e);
    } catch (IllegalAccessException e) {
      throw new RuntimeException(e);
    }
  }
  public void compareToNaive(GrayS16 derivX, GrayS16 derivY) {
    GrayF32 expected = new GrayF32(derivX.width, derivX.height);
    GrayF32 found = new GrayF32(derivX.width, derivX.height);

    ImplSsdCornerNaive naive = new ImplSsdCornerNaive(width, height, 3, true);
    naive.process(derivX, derivY, expected);

    ImplShiTomasiCornerWeighted_S16 fast = new ImplShiTomasiCornerWeighted_S16(3);
    fast.process(derivX, derivY, found);

    // how the weighted is applied is different between these two verisons, which is why the error
    // tolerance is so high
    BoofTesting.assertEqualsInner(expected, found, 0.5, 3, 3, true);
  }
  /**
   * Converts an image from one type to another type.
   *
   * @param src Input image. Not modified.
   * @param dst Converted output image. Modified.
   * @return Converted image.
   */
  @SuppressWarnings({"unchecked"})
  public static void convert(ImageSingleBand<?> src, ImageSingleBand<?> dst) {
    if (src.getClass() == dst.getClass()) {
      ((ImageSingleBand) dst).setTo(src);
      return;
    }

    Method m =
        BoofTesting.findMethod(ImplConvertImage.class, "convert", src.getClass(), dst.getClass());
    try {
      m.invoke(null, src, dst);
    } catch (IllegalAccessException e) {
      throw new RuntimeException(e);
    } catch (InvocationTargetException e) {
      throw new RuntimeException(e);
    }
  }
  private void compareToNaive(
      Image left, Image right, int minDisparity, int maxDisparity, int radiusX, int radiusY) {
    int w = left.width;
    int h = left.height;

    DisparityScoreSadRect<Image, Disparity> alg =
        createAlg(minDisparity, maxDisparity, radiusX, radiusY, compDisp);
    StereoDisparityWtoNaive<Image> naive =
        new StereoDisparityWtoNaive<Image>(minDisparity, maxDisparity, radiusX, radiusY);

    Disparity found = GeneralizedImageOps.createSingleBand(disparityType, w, h);
    ImageFloat32 expected = new ImageFloat32(w, h);

    alg.process(left, right, found);
    naive.process(left, right, expected);

    BoofTesting.assertEquals(found, expected, 1);
  }
Esempio n. 11
0
  /** Process two images, one is a sub-image of the first. See if it produces the same results */
  @Test
  public void checkSubImage() {
    SiftImageScaleSpace ss1 = new SiftImageScaleSpace(1.6f, 5, 4, false);
    SiftImageScaleSpace ss2 = new SiftImageScaleSpace(1.6f, 5, 4, false);

    ImageFloat32 input = new ImageFloat32(60, 70);
    GImageMiscOps.fillUniform(input, rand, 0, 100);
    ImageFloat32 sub = BoofTesting.createSubImageOf(input);

    ss1.constructPyramid(input);
    ss2.constructPyramid(sub);

    for (int index = 0; index < ss1.scale.length; index++) {
      ImageFloat32 s1 = ss1.scale[index];
      ImageFloat32 s2 = ss2.scale[index];

      float sum1 = ImageStatistics.sum(s1);
      float sum2 = ImageStatistics.sum(s2);

      assertTrue(sum1 != 0);
      assertEquals(sum1, sum2, 1e-6);
    }
  }
 @Test
 public void border() {
   BoofTesting.checkSubImage(this, "checkBorder", false, img, 0, 0, 5, 7);
   BoofTesting.checkSubImage(this, "checkBorder", false, img, img.width - 1, img.height - 1, 5, 7);
   BoofTesting.checkSubImage(this, "checkBorder", false, img, 100, 200, 5, 7);
 }
 @Test
 public void inner() {
   BoofTesting.checkSubImage(this, "checkInner", false, img, 4, 6, 7, 5);
   BoofTesting.checkSubImage(this, "checkInner", false, img, 7, 3, 4, 5);
   BoofTesting.checkSubImage(this, "checkInner", false, img, 4, 6, 2, 4);
 }