Esempio n. 1
0
  private static void initFrequencys(Model parent, SuperFrequencyTrace frequencys) {
    // assume frequecys is set to end.
    PopulationSizeModel[] sizes = parent.getPopulationSizeModels();
    double total = 0;
    for (int d = 0; d < sizes.length; d++) {
      total += sizes[d].populationSize(0); // assuming homogenous time
      // model.
    }
    double pick = RandomGenerator.getRandom().nextDouble() * total;
    int d = 0;
    total = 0;
    for (int i = 0; i < sizes.length; i++) {
      total += sizes[d].populationSize(0);
      if (total >= pick) {
        d = i;
        break;
      }
    }
    int choosen = parent.getModelHistory().getSeedDeme();
    if (choosen > -1) d = choosen;
    double[] freqs = new double[sizes.length]; // demeCount;
    freqs[d] =
        1.0 / (parent.getPopulationSizeModels()[d].populationSize(parent.getEndTime())); // FIXME

    frequencys.setFrequencys(freqs);
    // System.out.println("INITF:"+Arrays.toString(freqs));
  }
Esempio n. 2
0
/**
 * The basic simulator. Its getting more rewrites than you can shake a stick at. What is next? Well
 * we need to simplify the dam frequency trace stuff. Its too fragile and is using too much memory.
 * Push back to a single dimension array and do index arithmetic is a good start. However still have
 * lots of "conditions". For example we have stopping conditions. There is also restart conditions.
 * Restart conditions could go over model boundaries. So this needs to go outside this classes
 * scope. finally there are time shift Conditions when we use fixation time for finishing a sweep.
 * Also there is the situation where we may want the sweep to continue after such a condition is
 * meet. We also have a contract to add the correct start/stop selection events for this coalsecent
 * pass.
 *
 * <p>So even with the move to a simple single dim array that will save memory and avoid cache
 * pollution. I don't know how fix the other problems in a clean fashion. Consider that many loci
 * code will be added soon! Then there will be haplotypes and alleles.
 *
 * <p>For now lets consider than time information is *not* in frequency trace but in the model.
 *
 * <p>So now we have a "iteration" of selection. Check for boundary conditions. Resets are bubbled
 * up the call stack and must deal with removing any Cevent.
 *
 * @author bob
 */
public class DefaultSelectionSimulator implements SelectionSimulator {
  private Binomial binomial = RandomGenerator.getBinomial();
  // private Random random=RandomGenerator.getRandom();
  private int ndeme;
  private PopulationSizeModel[] sizes; // =model.getPopulationSizeModels();
  private double[] totalMRates; // =model.getTotalMigrationRates();
  private int[][] migrationDirections; // =model.getMigrationDirectionsByDeme();
  private double[][] migrationRates; // =model.getMigrationRatesByDeme();
  private double mu; // =modelHistory.getForwardAlleleMutationRate();
  private double nu; // =modelHistory.getBackAlleleMutationRate();
  private double[] afterSelectionA; // =new double[ndeme];
  private double[] afterSelectiona; // =new double[ndeme];

  public DefaultSelectionSimulator() {
    // TODO Auto-generated constructor stub
  }

  @Override
  public List<ModelEvent> init(ModelHistroy modelHistory) {
    return new ArrayList<ModelEvent>();
  }

  // private Binomial binomial=RandomGenerator.getBinomial();
  //	@Override
  //	public List<ModelEvent> forwardSimulator(Model model, ModelHistroy modelHistory,
  // SelectionStrengthModel[] ssm, SuperFrequencyTrace frequencys) {
  //		// first init.
  //
  //		if (model.getEndTime() == Long.MAX_VALUE) {
  //			// for now no initial frequencys are set.
  //			initFrequencys(model, frequencys);
  //		}
  //		List<ModelEvent> events =new ArrayList<ModelEvent>();
  //		int ndeme =model.getDemeCount();
  //		// int end=frequencys[0][0].length - 1;
  //		// int currentGen =frequencys[0][0].length - 1;// we count down: Always.
  //		// int genCount=0;
  //
  //		double[] afterSelectionA =new double[ndeme];
  //		double[] afterSelectiona =new double[ndeme];
  //
  //		double[] totalMRates =model.getTotalMigrationRates();
  //		int[][] migrationDirections =model.getMigrationDirectionsByDeme();
  //		double[][] migrationRates =model.getMigrationRatesByDeme();
  //		double mu =modelHistory.getForwardAlleleMutationRate();
  //		double nu =modelHistory.getBackAlleleMutationRate();
  //		PopulationSizeModel[] sizes =model.getPopulationSizeModels();
  //
  //		boolean zeroFlag =true;
  //		boolean fixFlag =true;
  //		boolean addedSelectionStart =false;
  //		boolean localTimeRescalling =model.getEndTime() == Long.MAX_VALUE;
  //
  //		FrequencyCondition stopping =modelHistory.getTimedCondition();
  //		// System.out.println("Stopping:"+stopping);
  //		frequencys.reset();
  //		// frequencys.setIteratorToEnd();
  //		while (false && localTimeRescalling) {
  //
  //			// System.out.println("In Loop:"+frequencys.getTime());
  //			// first get all the selection amounts in each deme before
  //			// migration.
  //
  //			// note this with be Integer.MAX_VALUE for fixation time invariant boundry conditions
  //			int time =frequencys.getTime();
  //			double[][] thisFreq =frequencys.current();
  //			double[][] nextFreq =frequencys.previous(localTimeRescalling);
  //			for (int d =0; d < ndeme; d++) {
  //				if (sizes[d] == PopulationSizeModel.NULL_POPULATION)
  //					continue;
  //				double sAA =ssm[d].getStrength(1, 1, time);
  //				double saA =ssm[d].getStrength(0, 1, time);
  //				double saa =ssm[d].getStrength(0, 0, time);
  //
  //				double x =thisFreq[d][1];// frequencys[d][1][currentGen];// note the 2 allele
  //				// assumption
  //				double ax =1.0 - x;
  //
  //				if (x > 0)
  //					zeroFlag =false;
  //				if (x < 1.0)
  //					fixFlag =false;
  //
  //				afterSelectionA[d] =x * (1 + ax * saA + x * sAA);
  //				afterSelectiona[d] =ax * (1 + x * saA + ax * saa);
  //			}
  //
  //			// now we deal with migration and update the next generations
  //			// frequencys.
  //
  //			for (int d =0; d < ndeme; d++) {
  //				if (sizes[d] == PopulationSizeModel.NULL_POPULATION) {
  //					nextFreq[d][1] =0;// frequencys[d][1][nextGen] =0;
  //					nextFreq[d][0] =0;// frequencys[d][0][nextGen] =0;
  //					continue;
  //				}
  //				// first self migration.
  //				double rate =1 - totalMRates[d];
  //				double nA =rate * afterSelectionA[d];
  //				double na =rate * afterSelectiona[d];
  //
  //				int[] directions =migrationDirections[d];
  //				double[] rates =migrationRates[d];
  //				for (int count =0; count < directions.length; count++) {
  //					int j =directions[count];
  //					rate =rates[count];
  //					nA +=rate * afterSelectionA[j];
  //					na +=rate * afterSelectiona[j];
  //				}
  //				// now put it together for xp
  //				double xp =(nA * (1 - nu) + mu * na) / (nA + na);
  //				// we keep N in the sample for now...
  //				int N =(int) sizes[d].populationSize(time) * 2;//
  //				double f =(double) binomial.generateBinomial(N, xp) / N;
  //				// update
  //				nextFreq[d][1] =f;
  //				nextFreq[d][0] =1 - f;
  //				// System.out.println(f+" "+selectionStrength[d].getStrength(1,
  //				// 1, time));
  //				// TIME is wrong because we may shift time...
  //
  //			}
  //
  //			// hard to read and not clear at all IMO.
  //			// better ideas welcome
  //			if (localTimeRescalling) {
  //				if (zeroFlag) {
  //					// reset
  //					// System.out.println("RESET");
  //					frequencys.setIteratorToEnd();
  //				} else if (fixFlag) {
  //					// we shift time and break
  //					// first we want indexOffset to point to currentGen
  //					frequencys.shiftAndSet((int) model.getStartTime(), (int) model.getStartTime());
  //					events.add(new SelectionEndTimeEvent(frequencys.getEndTime()));
  //					events.add(new SelectionStartEvent(frequencys.getStartTime(), null));
  //					addedSelectionStart =true;
  //					// do we have enough size?
  //					localTimeRescalling =false;
  //					// System.out.println("IffixFlagTrueRescalling:"+time+"\t"+frequencys.getStartTime());
  //					break;
  //				} else if (stopping != null && stopping.isMeet(nextFreq)) {
  //					frequencys.shiftAndSet((int) stopping.getTime(), (int) model.getStartTime());
  //					events.add(new SelectionEndTimeEvent(frequencys.getEndTime()));
  //					// do we have enough size?
  //					localTimeRescalling =false;
  //					// System.out.println("OtherStopping:"+time);
  //				}
  //			} else if (fixFlag) {
  //				// copy fixed to end and break
  //				// System.out.println("MakeStart:"+time);
  //				frequencys.shiftAndSet(frequencys.getTime(), frequencys.getTime());
  //				// System.out.println("IffixFlagTrue:"+time);
  //				events.add(new SelectionStartEvent(time, null));
  //				addedSelectionStart =true; // dirty hack to stop adding a SelectionStart event after
  //											// loop exit
  //				// frequencys.setStart();
  //				// for (int d =0; d < ndeme; d++) {
  //				// Arrays.fill(frequencys[d][0], 0, currentGen, 0.0);
  //				// Arrays.fill(frequencys[d][1], 0, currentGen, 1.0);
  //				// }
  //
  //				break;
  //			}
  //			fixFlag =true;
  //			zeroFlag =true;
  //			//
  // System.out.println("Iterate:"+toString(frequencys.current())+"\tTime:"+time+"\tft:"+frequencys.getTime());
  //		}
  //		// if we
  //		if (!addedSelectionStart) {
  //
  //			// need to start the selection phase when we are not fixed.
  //			double[] freq =new double[ndeme];
  //			double[][] local =frequencys.current();
  //			for (int i =0; i < freq.length; i++) {
  //				freq[i] =local[i][1];
  //			}
  //			// System.out.println("notFixed
  // "+Arrays.toString(freq)+"\t"+frequencys.getTime()+"\t"+model.getStartTime()+"\n\t"+events);
  //			events.add(new SelectionStartEvent(frequencys.getTime(), freq));
  //		}
  //		// System.out.println("DoneSelection");
  //		// so we are *almost* done...
  //		return events;
  //
  //	}

  public List<ModelEvent> forwardSimulator(
      Model model,
      ModelHistroy modelHistory,
      SelectionStrengthModel[] ssm,
      SuperFrequencyTrace frequencys) {
    // first init.
    // System.err.println("Did we even call me?");
    //		if (model.getEndTime() == Long.MAX_VALUE) {
    //			// for now no initial frequencys are set.
    //			initFrequencys(model, frequencys);
    //		}
    List<ModelEvent> events = new ArrayList<ModelEvent>();
    ndeme = model.getDemeCount();
    // int end=frequencys[0][0].length - 1;
    // int currentGen =frequencys[0][0].length - 1;// we count down: Always.
    // int genCount=0;

    afterSelectionA = new double[ndeme];
    afterSelectiona = new double[ndeme];

    totalMRates = model.getTotalMigrationRates();
    migrationDirections = model.getMigrationDirectionsByDeme();
    migrationRates = model.getMigrationRatesByDeme();
    mu = modelHistory.getForwardAlleleMutationRate();
    nu = modelHistory.getBackAlleleMutationRate();
    sizes = model.getPopulationSizeModels();

    FrequencyCondition stopping = modelHistory.getTimedCondition();
    RestartCondition restartCondition = modelHistory.getRestartCondtion();
    // System.err.println("Stop:"+stopping+"\tstart:"+restartCondition);
    // boolean zeroFlag =true;
    // boolean fixFlag =true;

    // so we have 2 basic "modes" Condtion on fixation in time homegenous mode. Start with
    // defined conditions.
    // in the first case time is not important and we can assume time always ==
    // model.getStartTime();
    // in the second case we are bounded on the interval start time to end time. We assume that
    // our lovely
    // frequency trace data struct is allocated in such a way that this will work in both cases.
    // in both cases we have just one important difference. We don't add a selection end event
    // till we know about the
    // selelction startEvent for the first case. Otherwise we do everything quite linear like.
    // for now lets just fork to 2 different methods
    // right here....
    frequencys.reset();
    boolean fixationConidtion = model.getEndTime() == Long.MAX_VALUE;
    if (fixationConidtion) {
      // System.err.println("We are doing it baby");
      double time = model.getStartTime(); // we use this time for the whole thing. Time
      // invaraint right!
      frequencys.setIndexMostPastward(); // start at the very back.
      initFrequencys(model, frequencys);
      double[] thisGen = frequencys.getFrequencys(null);
      double[] nextGen = new double[thisGen.length];
      while (true) {
        // System.err.println("Oh yea!"+Arrays.toString(thisGen));
        selectionSimulationStep(thisGen, nextGen, ssm, time);
        if (restartCondition.isMeet(nextGen, ndeme)) {
          // System.out.println("Restart?");
          return null; // bubble up the call stack to where we need it.
        }
        // copy data back.
        frequencys.moveForward();
        frequencys.setFrequencys(nextGen);
        // check if we are done.
        // System.err.println("Stopping?"+stopping.isMeet(nextGen));
        if (stopping.isMeet(nextGen)) {
          // System.err.println("We Stoped Doing it:"+Arrays.toString(nextGen)+"\t"+stopping);
          // shift and stop
          frequencys.setCurrentIndexAsStart(); // good luck with that!
          // add events
          // System.err.println("TRACE:"+frequencys);
          events.add(new SelectionEndTimeEvent(frequencys.getTimeMostPastward()));
          events.add(
              new SelectionStartEvent(stopping.getTime(), nextGen)); // well we already new That!
          frequencys.setEndTime();
          // System.err.println(events+"\t"+frequencys.getEndTime()+"\tPastward:"+frequencys.getTimeMostPastward());
          return events; // get me out here.
        }
        if (restartCondition.isMeet(nextGen, ndeme)) {
          frequencys.setIndexMostPastward(); // start at the very back.
          initFrequencys(model, frequencys);
          frequencys.getFrequencys(thisGen);
          // System.err.println("START AGAIN:"+Arrays.toString(nextGen)+"\t"+stopping);
          continue;
        }
        double[] tmp = thisGen;
        thisGen = nextGen; // no need for a copy
        nextGen = tmp; // copied over. We hope!
      }
    }
    // so now we have a much simpler task of starting and finishing things at fixed times.
    // first we assume that inital conditions are specified and already done.
    frequencys.setIndexMostPastward();
    long time = frequencys.getIndexTime();

    assert time == model.getEndTime() : time + "\t" + model.getEndTime();
    double[] thisGen = frequencys.getFrequencys(null);
    double[] nextGen = new double[thisGen.length];
    // System.out.println("StartLoop 2 "+restartCondition.isMeet(thisGen, ndeme));
    while (frequencys.hasMoreForward()) {
      selectionSimulationStep(thisGen, nextGen, ssm, time);
      frequencys.moveForward();
      frequencys.setFrequencys(nextGen);
      time = frequencys.getIndexTime();

      // System.out.println("restart.."+restartCondition.isMeet(nextGen,
      // ndeme)+"\t"+Arrays.toString(nextGen)+"\t"+ndeme+"\ttime:"+time);
      if (restartCondition != null && restartCondition.isMeet(nextGen, ndeme)) {
        return null; // bubble  the restart up the stack.
      }
      // System.err.println("Stopping?"+stopping.isMeet(nextGen));
      if (stopping != null && stopping.isMeet(nextGen)) {
        events.add(new SelectionStartEvent(time, thisGen));
        // System.out.println("Stop:"+events+"\t"+Arrays.toString(nextGen)+"\t"+time);
        frequencys.setEndTime();
        return events;
      }
      if (restartCondition != null && restartCondition.isMeet(nextGen, ndeme)) {
        frequencys.setIndexMostPastward(); // start at the very back.
        frequencys.getFrequencys(thisGen);
        continue;
      }

      double[] tmp = thisGen;
      thisGen = nextGen; // no need for a copy
      nextGen = tmp; // copied over. We hope!
      // now what about stopping conditions?
      // meh..just add a start for now.
    }
    assert time == model.getStartTime() : time + "\t" + model.getStartTime();
    if (time == 0) events.add(new SelectionStartEvent(model.getStartTime(), thisGen));
    // System.out.println("FALLThrough:"+events);
    return events;
  }

  /*
   * side effect. Uses class variables rather than "passing them" bit "doggy" but saves a sill
   * number of arguments.
   */
  private void selectionSimulationStep(
      double[] previous, double[] next, SelectionStrengthModel[] ssm, double time) {

    boolean fixFlag = true;
    boolean zeroFlag = true;
    // lots of class v set from the calling function.

    for (int d = 0; d < ndeme; d++) {
      if (sizes[d] == PopulationSizeModel.NULL_POPULATION) continue;
      double x = previous[d];
      // assumption
      double ax = 1.0 - x;
      if (x > 0) zeroFlag = false;
      if (x < 1.0) fixFlag = false;
      double sAA = ssm[d].getStrength(1, 1, time);
      double sAa = ssm[d].getStrength(1, 0, time);
      double saa = ssm[d].getStrength(0, 0, time);
      // System.err.println("SAA @ time:"+time+"\t"+sAA+"\t"+sAa+"\t"+saa);
      // System.err.println("x's:"+x+"\t"+ax);
      afterSelectionA[d] = x * (1 + ax * sAa + x * sAA);
      afterSelectiona[d] = ax * (1 + x * sAa + ax * saa);
    }

    for (int d = 0; d < ndeme; d++) {
      if (sizes[d] == PopulationSizeModel.NULL_POPULATION) {
        next[d] = 0; // frequencys[d][1][nextGen] =0;
        // nextFreq[d][0]=0;//frequencys[d][0][nextGen] =0;
        continue;
      }
      // first self migration.
      double rate = 1 - totalMRates[d];
      double nA = rate * afterSelectionA[d];
      double na = rate * afterSelectiona[d];
      // for(int[] dier:migrationDirections)
      //	System.out.println(Arrays.toString(dier));
      int[] directions = migrationDirections[d];
      double[] rates = migrationRates[d];
      for (int count = 0; count < directions.length; count++) {
        int j = directions[count];
        rate = rates[count];
        // System.err.println("After!"+Arrays.toString(afterSelectionA)+"\t"+j+"\tD:"+Arrays.toString(directions));
        nA += rate * afterSelectionA[j];
        na += rate * afterSelectiona[j];
      }
      // now put it together for xp

      double xp = (nA * (1 - nu) + mu * na) / (nA + na);
      // we keep N in the sample for now...
      int N = (int) Math.ceil(sizes[d].populationSize(time) * 2); //
      // System.err.println("CallBin "+N+" "+xp+"\t"+sizes[d].populationSize(time)+"\t"+nA+"\t"+na);
      double f = (double) binomial.generateBinomial(N, xp) / N;
      // System.err.println("return bin "+f);
      // what if N is zero!
      if (N == 0) {
        f = 0; // throw new RuntimeException("NaN, PopulationSize is probably zero! "+N);
      }
      // update
      next[d] = f;
    }
  }

  private String toString(double[][] freqs) {
    String s = "";
    for (int i = 0; i < freqs.length; i++) {
      s += freqs[i][1] + "\t";
    }
    return s;
  }

  private static void initFrequencys(Model parent, SuperFrequencyTrace frequencys) {
    // assume frequecys is set to end.
    PopulationSizeModel[] sizes = parent.getPopulationSizeModels();
    double total = 0;
    for (int d = 0; d < sizes.length; d++) {
      total += sizes[d].populationSize(0); // assuming homogenous time
      // model.
    }
    double pick = RandomGenerator.getRandom().nextDouble() * total;
    int d = 0;
    total = 0;
    for (int i = 0; i < sizes.length; i++) {
      total += sizes[d].populationSize(0);
      if (total >= pick) {
        d = i;
        break;
      }
    }
    int choosen = parent.getModelHistory().getSeedDeme();
    if (choosen > -1) d = choosen;
    double[] freqs = new double[sizes.length]; // demeCount;
    freqs[d] =
        1.0 / (parent.getPopulationSizeModels()[d].populationSize(parent.getEndTime())); // FIXME

    frequencys.setFrequencys(freqs);
    // System.out.println("INITF:"+Arrays.toString(freqs));
  }

  // public static void initFrequencys(Model model,FrequencyTrace frequencys) {
  // double[][] freqs =frequencys.getEnd();
  // PopulationSizeModel[] sizes =model.getPopulationSizeModels();
  // double total =0;
  // for (int d =0; d < freqs.length; d++) {
  // freqs[d][1] =0;
  // freqs[d][0] =1;
  // total +=sizes[d].populationSize(0);// assuming homogenous time model.
  //
  // }
  // double pick =RandomGenerator.getRandom().nextDouble() * total;
  // int d =0;
  // total =0;
  // for (int i =0; i < sizes.length; i++) {
  // total +=sizes[d].populationSize(0);
  // if (total >= pick) {
  // d =i;
  // break;
  // }
  // }
  // freqs[d][1] =1.0 /
  // (model.getPopulationSizeModels()[d].populationSize(frequencys.getEndTime()) * 4);
  // freqs[d][0] =1.0 - freqs[d][1];
  //
  // }
}