@Override protected void doTrain(Map<ClassDescriptor, List<double[]>> data, int dimension) { this.dimension = dimension; for (ClassDescriptor c : data.keySet()) { /* * Estimate covariance using ML. */ double[] mean = MaximumLikelihoodEstimation.getMean(data.get(c), dimension); double[][] cov = MaximumLikelihoodEstimation.getCovariance(data.get(c), mean); Kernel kernel = type.getKernel(cov, radius); distributions.put(c, new ParzenDistribution(kernel, data.get(c))); } }
/** * Reconstruct a parzen window classifier from serialized data. * * @param model * @param classes * @return */ @Import(ModelType.CLASSIFIER) public static ParzenWindowClassifier newInstance( Map<String, Object> model, Map<ClassDescriptor, Map<String, Object>> classes) { ParzenWindowClassifier classifier; double radius = Double.parseDouble((String) model.get("radius")); int dimension = Integer.parseInt((String) model.get("dimension")); KernelType type; if (((String) model.get("kernel")).equals("normal")) { type = KernelType.NORMAL; } else { type = KernelType.UNIFORM; } classifier = new ParzenWindowClassifier(radius, type); for (ClassDescriptor c : classes.keySet()) { double[][] a = (double[][]) classes.get(c).get("vectors"); List<double[]> l = new ArrayList<double[]>(a.length); for (int i = 0; i < a.length; i++) { l.add(a[i]); } // reconstruct covariance matrix double[] mean = MaximumLikelihoodEstimation.getMean(l, dimension); double[][] cov = MaximumLikelihoodEstimation.getCovariance(l, mean); Kernel kernel = type.getKernel(cov, radius); classifier.distributions.put(c, new ParzenDistribution(kernel, l)); } return classifier; }