/** Loads the code of the method. */ protected Instruction[] loadCode(Method m) { Code c = m.getCode(); if (c == null) { return null; } InstructionList il = new InstructionList(c.getCode()); InstructionHandle[] hs = il.getInstructionHandles(); int length = hs.length; Instruction[] is = new Instruction[length]; for (int i = 0; i < length; i++) { is[i] = insnFactory.createAndInitialize(this, hs[i], i, m.getConstantPool()); if (c.getLineNumberTable() != null) { // annoying bug when BCEL don't seem to find linenumber - pos match // also sometimes linenumber tables are not available is[i].setContext( ci.getName(), name, c.getLineNumberTable().getSourceLine(is[i].getPosition()), is[i].getPosition()); } } return is; }
public Instruction createInstructionGetfield(Element inst) throws IllegalXMLVMException { String classType = inst.getAttributeValue("class-type"); String field = inst.getAttributeValue("field"); String type = inst.getAttributeValue("type"); Type t = parseTypeString(type); return _factory.createGetField(classType, field, t); }
/** Marks the code starting at the given offset. */ private void markCode(Clazz clazz, Method method, CodeAttribute codeAttribute, int offset) { boolean oldNext = next; byte[] code = codeAttribute.code; // Continue with the current instruction as long as we haven't marked it // yet. while (!isReachable[offset]) { // Get the current instruction. Instruction instruction = InstructionFactory.create(code, offset); // Mark it as reachable. isReachable[offset] = true; // By default, we'll assume we can continue with the next // instruction in a moment. next = true; // Mark the branch targets, if any. instruction.accept(clazz, method, codeAttribute, offset, this); // Can we really continue with the next instruction? if (!next) { break; } // Go to the next instruction. offset += instruction.length(offset); } next = oldNext; }
private Instruction createInvokeInstruction(Element inst, short kind) throws IllegalXMLVMException { String classType = inst.getAttributeValue("class-type"); String methodName = inst.getAttributeValue("method"); Element signature = inst.getChild("signature", nsXMLVM); Type retType = collectReturnType(signature); Type[] argTypes = collectArgumentTypes(signature); return _factory.createInvoke(classType, methodName, retType, argTypes, kind); }
protected MethodInfo createCallStub(String originator, int id) { MethodInfo mi = new MethodInfo(id); String cname = ci.getName(); Instruction insn; mi.name = originator + name; // + cname; // could maybe also include the called method, but keep it fast mi.signature = "()V"; mi.maxLocals = isStatic() ? 0 : 1; mi.maxStack = getNumberOfCallerStackSlots(); // <2do> cache for optimization mi.localVariableNames = EMPTY; mi.localVariableTypes = EMPTY; mi.lineNumbers = null; mi.exceptions = null; mi.thrownExceptionClassNames = null; mi.uniqueName = mi.name; // createAndInitialize the code CodeBuilder cb = mi.getCodeBuilder(); if (isStatic()) { mi.modifiers |= Modifier.STATIC; if (isClinit()) { insn = insnFactory.create(null, INVOKECLINIT.OPCODE); } else { insn = insnFactory.create(null, Constants.INVOKESTATIC); } } else if (name.equals("<init>")) { insn = insnFactory.create(null, Constants.INVOKESPECIAL); } else { insn = insnFactory.create(null, Constants.INVOKEVIRTUAL); } ((InvokeInstruction) insn).setInvokedMethod(cname, name, signature); cb.append(insn); insn = insnFactory.create(null, Constants.RETURN); cb.append(insn); cb.setCode(); return mi; }
public void visitExceptionInfo( Clazz clazz, Method method, CodeAttribute codeAttribute, ExceptionInfo exceptionInfo) { int startPC = Math.max(exceptionInfo.u2startPC, clipStart); int endPC = Math.min(exceptionInfo.u2endPC, clipEnd); int handlerPC = exceptionInfo.u2handlerPC; int catchType = exceptionInfo.u2catchType; // Exclude any subroutine invocations that jump out of the try block, // by adding a try block before (and later on, after) each invocation. for (int offset = startPC; offset < endPC; offset++) { if (branchTargetFinder.isSubroutineInvocation(offset)) { Instruction instruction = InstructionFactory.create(codeAttribute.code, offset); int instructionLength = instruction.length(offset); // Is it a subroutine invocation? if (!exceptionInfo.isApplicable(offset + ((BranchInstruction) instruction).branchOffset)) { if (DEBUG) { System.out.println( " Appending extra exception [" + startPC + " -> " + offset + "] -> " + handlerPC); } // Append a try block that ends before the subroutine invocation. codeAttributeComposer.appendException( new ExceptionInfo(startPC, offset, handlerPC, catchType)); // The next try block will start after the subroutine invocation. startPC = offset + instructionLength; } } } if (DEBUG) { System.out.println( " Appending exception [" + startPC + " -> " + endPC + "] -> " + handlerPC); } // Append the exception. Note that exceptions with empty try blocks // are automatically ignored. codeAttributeComposer.appendException(new ExceptionInfo(startPC, endPC, handlerPC, catchType)); }
public void visitBranchInstruction( Clazz clazz, Method method, CodeAttribute codeAttribute, int offset, BranchInstruction branchInstruction) { // Check if the instruction is an unconditional goto instruction. byte opcode = branchInstruction.opcode; if (opcode == InstructionConstants.OP_GOTO || opcode == InstructionConstants.OP_GOTO_W) { // Check if the goto instruction points to another simple goto // instruction. int branchOffset = branchInstruction.branchOffset; int targetOffset = offset + branchOffset; if (branchOffset != branchInstruction.length(offset) && !codeAttributeEditor.isModified(offset) && !codeAttributeEditor.isModified(targetOffset)) { Instruction targetInstruction = InstructionFactory.create(codeAttribute.code, targetOffset); if (targetInstruction.opcode == InstructionConstants.OP_GOTO) { // Simplify the goto instruction. int targetBranchOffset = ((BranchInstruction) targetInstruction).branchOffset; Instruction newBranchInstruction = new BranchInstruction(opcode, (branchOffset + targetBranchOffset)); codeAttributeEditor.replaceInstruction(offset, newBranchInstruction); // Visit the instruction, if required. if (extraInstructionVisitor != null) { extraInstructionVisitor.visitBranchInstruction( clazz, method, codeAttribute, offset, branchInstruction); } } } } }
public void visitCodeAttribute(Clazz clazz, Method method, CodeAttribute codeAttribute) { // DEBUG = // clazz.getName().equals("abc/Def") && // method.getName(clazz).equals("abc"); if (DEBUG) { method.accept(clazz, new ClassPrinter()); } branchTargetFinder.visitCodeAttribute(clazz, method, codeAttribute); // Don't bother if there aren't any subroutines anyway. if (!containsSubroutines(codeAttribute)) { return; } if (DEBUG) { System.out.println( "SubroutineInliner: processing [" + clazz.getName() + "." + method.getName(clazz) + method.getDescriptor(clazz) + "]"); } // Append the body of the code. codeAttributeComposer.reset(); codeAttributeComposer.beginCodeFragment(codeAttribute.u4codeLength); // Copy the non-subroutine instructions. int offset = 0; while (offset < codeAttribute.u4codeLength) { Instruction instruction = InstructionFactory.create(codeAttribute.code, offset); int instructionLength = instruction.length(offset); // Is this returning subroutine? if (branchTargetFinder.isSubroutine(offset) && branchTargetFinder.isSubroutineReturning(offset)) { // Skip the subroutine. if (DEBUG) { System.out.println( " Skipping original subroutine instruction " + instruction.toString(offset)); } // Append a label at this offset instead. codeAttributeComposer.appendLabel(offset); } else { // Copy the instruction, inlining any subroutine call recursively. instruction.accept(clazz, method, codeAttribute, offset, this); } offset += instructionLength; } // Copy the exceptions. Note that exceptions with empty try blocks // are automatically removed. codeAttribute.exceptionsAccept(clazz, method, subroutineExceptionInliner); if (DEBUG) { System.out.println(" Appending label after code at [" + offset + "]"); } // Append a label just after the code. codeAttributeComposer.appendLabel(codeAttribute.u4codeLength); // End and update the code attribute. codeAttributeComposer.endCodeFragment(); codeAttributeComposer.visitCodeAttribute(clazz, method, codeAttribute); if (DEBUG) { method.accept(clazz, new ClassPrinter()); } }
public Instruction createInstructionNew(Element inst) { String t = inst.getAttributeValue("type"); return _factory.createNew(t); }
public Instruction createInstructionAload(Element inst) throws IllegalXMLVMException { String t = inst.getAttributeValue("type"); Type type = parseTypeString(t); int idx = Integer.parseInt(inst.getAttributeValue("index")); return _factory.createLoad(type, idx); }
public Instruction createInstructionLreturn(Element inst) { return _factory.createReturn(Type.LONG); }
public Instruction createInstructionFreturn(Element inst) { return _factory.createReturn(Type.FLOAT); }
public Instruction createInstructionDreturn(Element inst) { return _factory.createReturn(Type.DOUBLE); }
public Instruction createInstructionIreturn(Element inst) { return _factory.createReturn(Type.INT); }
public Instruction createInstructionReturn(Element inst) { return _factory.createReturn(Type.VOID); }
/** * Evaluates a block of instructions that hasn't been handled before, starting at the given offset * and ending at a branch instruction, a return instruction, or a throw instruction. Branch * instructions are handled recursively. */ private void evaluateInstructionBlock( Clazz clazz, Method method, CodeAttribute codeAttribute, int instructionOffset) { if (DEBUG) { if (evaluated[instructionOffset]) { System.out.println("-- (instruction block at " + instructionOffset + " already evaluated)"); } else { System.out.println("-- instruction block:"); } } // Remember the initial stack size. int initialStackSize = stackSize; // Remember the maximum stack size. if (maxStackSize < stackSize) { maxStackSize = stackSize; } // Evaluate any instructions that haven't been evaluated before. while (!evaluated[instructionOffset]) { // Mark the instruction as evaluated. evaluated[instructionOffset] = true; Instruction instruction = InstructionFactory.create(codeAttribute.code, instructionOffset); if (DEBUG) { int stackPushCount = instruction.stackPushCount(clazz); int stackPopCount = instruction.stackPopCount(clazz); System.out.println( "[" + instructionOffset + "]: " + stackSize + " - " + stackPopCount + " + " + stackPushCount + " = " + (stackSize + stackPushCount - stackPopCount) + ": " + instruction.toString(instructionOffset)); } // Compute the instruction's effect on the stack size. stackSize -= instruction.stackPopCount(clazz); if (stackSize < 0) { throw new IllegalArgumentException( "Stack size becomes negative after instruction " + instruction.toString(instructionOffset) + " in [" + clazz.getName() + "." + method.getName(clazz) + method.getDescriptor(clazz) + "]"); } stackSizes[instructionOffset] = stackSize += instruction.stackPushCount(clazz); // Remember the maximum stack size. if (maxStackSize < stackSize) { maxStackSize = stackSize; } // Remember the next instruction offset. int nextInstructionOffset = instructionOffset + instruction.length(instructionOffset); // Visit the instruction, in order to handle branches. instruction.accept(clazz, method, codeAttribute, instructionOffset, this); // Stop evaluating after a branch. if (exitInstructionBlock) { break; } // Continue with the next instruction. instructionOffset = nextInstructionOffset; if (DEBUG) { if (evaluated[instructionOffset]) { System.out.println("-- (instruction at " + instructionOffset + " already evaluated)"); } } } // Restore the stack size for possible subsequent instruction blocks. this.stackSize = initialStackSize; }
public Instruction createInstructionGetstatic(Element inst) throws IllegalXMLVMException { String classType = inst.getAttributeValue("class-type"); String field = inst.getAttributeValue("field"); Type type = parseTypeString(inst.getAttributeValue("type")); return _factory.createFieldAccess(classType, field, type, Constants.GETSTATIC); }