Exemple #1
0
 public StringBuilder toString(StringBuilder sb, String[] fs, long idx) {
   Vec vecs[] = vecs();
   for (int c = 0; c < fs.length; c++) {
     Vec vec = vecs[c];
     if (vec.isEnum()) {
       String s = "----------";
       if (!vec.isNA(idx)) {
         int x = (int) vec.at8(idx);
         if (x >= 0 && x < vec._domain.length) s = vec._domain[x];
       }
       sb.append(String.format(fs[c], s));
     } else if (vec.isInt()) {
       if (vec.isNA(idx)) {
         Chunk C = vec.elem2BV(0); // 1st Chunk
         int len = C.pformat_len0(); // Printable width
         for (int i = 0; i < len; i++) sb.append('-');
       } else {
         try {
           sb.append(String.format(fs[c], vec.at8(idx)));
         } catch (IllegalFormatException ife) {
           System.out.println("Format: " + fs[c] + " col=" + c + " not for ints");
           ife.printStackTrace();
         }
       }
     } else {
       sb.append(String.format(fs[c], vec.at(idx)));
       if (vec.isNA(idx)) sb.append(' ');
     }
     sb.append(' '); // Column seperator
   }
   sb.append('\n');
   return sb;
 }
Exemple #2
0
 @Override
 public void map(Chunk[] ix, NewChunk[] ncs) {
   final Vec[] vecs = new Vec[_cols.length];
   final Vec anyv = _base.anyVec();
   final long nrow = anyv.length();
   long r = ix[0].at80(0);
   int last_ci = anyv.elem2ChunkIdx(r < nrow ? r : 0); // memoize the last chunk index
   long last_c0 = anyv._espc[last_ci]; // ...         last chunk start
   long last_c1 = anyv._espc[last_ci + 1]; // ...         last chunk end
   Chunk[] last_cs = new Chunk[vecs.length]; // ...         last chunks
   for (int c = 0; c < _cols.length; c++) {
     vecs[c] = _base.vecs()[_cols[c]];
     last_cs[c] = vecs[c].elem2BV(last_ci);
   }
   for (int i = 0; i < ix[0]._len; i++) {
     // select one row
     r = ix[0].at80(i) - 1; // next row to select
     if (r < 0) continue;
     if (r >= nrow) {
       for (int c = 0; c < vecs.length; c++) ncs[c].addNum(Double.NaN);
     } else {
       if (r < last_c0 || r >= last_c1) {
         last_ci = anyv.elem2ChunkIdx(r);
         last_c0 = anyv._espc[last_ci];
         last_c1 = anyv._espc[last_ci + 1];
         for (int c = 0; c < vecs.length; c++) last_cs[c] = vecs[c].elem2BV(last_ci);
       }
       for (int c = 0; c < vecs.length; c++) ncs[c].addNum(last_cs[c].at(r));
     }
   }
 }
Exemple #3
0
 public void dropInteractions() { // only called to cleanup the InteractionWrappedVecs!
   if (_interactions != null) {
     Vec[] vecs = _adaptedFrame.remove(_interactionVecs);
     for (Vec v : vecs) v.remove();
     _interactions = null;
   }
 }
Exemple #4
0
 public Vec replace(int col, Vec nv) {
   assert col < _names.length;
   Vec rv = vecs()[col];
   assert rv.group().equals(nv.group());
   _vecs[col] = nv;
   _keys[col] = nv._key;
   if (DKV.get(nv._key) == null) // If not already in KV, put it there
   DKV.put(nv._key, nv);
   return rv;
 }
Exemple #5
0
 /**
  * Check that the vectors are all compatible. All Vecs have their content sharded using same
  * number of rows per chunk.
  */
 public void checkCompatible() {
   try {
     Vec v0 = anyVec();
     int nchunks = v0.nChunks();
     for (Vec vec : vecs()) {
       if (vec instanceof AppendableVec) continue; // New Vectors are endlessly compatible
       if (vec.nChunks() != nchunks)
         throw new IllegalArgumentException(
             "Vectors different numbers of chunks, " + nchunks + " and " + vec.nChunks());
     }
     // Also check each chunk has same rows
     for (int i = 0; i < nchunks; i++) {
       long es = v0.chunk2StartElem(i);
       for (Vec vec : vecs())
         if (!(vec instanceof AppendableVec) && vec.chunk2StartElem(i) != es)
           throw new IllegalArgumentException(
               "Vector chunks different numbers of rows, "
                   + es
                   + " and "
                   + vec.chunk2StartElem(i));
     }
   } catch (Throwable ex) {
     Throwables.propagate(ex);
   }
 }
Exemple #6
0
 @Override
 protected void setupLocal() {
   // Precompute the first input chunk index and start row inside that chunk for this partition
   Vec anyInVec = _srcVecs[0];
   long[] partSizes = Utils.partitione(anyInVec.length(), _ratios);
   long pnrows = 0;
   for (int p = 0; p < _partIdx; p++) pnrows += partSizes[p];
   long[] espc = anyInVec._espc;
   while (_pcidx < espc.length - 1 && (pnrows -= (espc[_pcidx + 1] - espc[_pcidx])) > 0)
     _pcidx++;
   assert pnrows <= 0;
   _psrow = (int) (pnrows + espc[_pcidx + 1] - espc[_pcidx]);
 }
Exemple #7
0
 // Make vector templates for all output frame vectors
 private Vec[][] makeTemplates(Frame dataset, float[] ratios) {
   Vec anyVec = dataset.anyVec();
   final long[][] espcPerSplit = computeEspcPerSplit(anyVec._espc, anyVec.length(), ratios);
   final int num = dataset.numCols(); // number of columns in input frame
   final int nsplits = espcPerSplit.length; // number of splits
   final String[][] domains = dataset.domains(); // domains
   Vec[][] t = new Vec[nsplits][ /*num*/]; // resulting vectors for all
   for (int i = 0; i < nsplits; i++) {
     // vectors for j-th split
     t[i] = new Vec(Vec.newKey(), espcPerSplit[i /*-th split*/]).makeZeros(num, domains);
   }
   return t;
 }
Exemple #8
0
 public Frame(String[] names, Vec[] vecs) {
   // assert names==null || names.length == vecs.length : "Number of columns does not match to
   // number of cols' names.";
   _names = names;
   _vecs = vecs;
   _keys = new Key[vecs.length];
   for (int i = 0; i < vecs.length; i++) {
     Key k = _keys[i] = vecs[i]._key;
     if (DKV.get(k) == null) // If not already in KV, put it there
     DKV.put(k, vecs[i]);
   }
   Vec v0 = anyVec();
   if (v0 == null) return;
   VectorGroup grp = v0.group();
   for (int i = 0; i < vecs.length; i++) assert grp.equals(vecs[i].group());
 }
Exemple #9
0
  @Override
  Val apply(Env env, Env.StackHelp stk, AST asts[]) {

    // Compute the variable args.  Find the common row count
    Val vals[] = new Val[asts.length];
    Vec vec = null;
    for (int i = 1; i < asts.length; i++) {
      vals[i] = stk.track(asts[i].exec(env));
      if (vals[i].isFrame()) {
        Vec anyvec = vals[i].getFrame().anyVec();
        if (anyvec == null) continue; // Ignore the empty frame
        if (vec == null) vec = anyvec;
        else if (vec.length() != anyvec.length())
          throw new IllegalArgumentException(
              "cbind frames must have all the same rows, found "
                  + vec.length()
                  + " and "
                  + anyvec.length()
                  + " rows.");
      }
    }
    boolean clean = false;
    if (vec == null) {
      vec = Vec.makeZero(1);
      clean = true;
    } // Default to length 1

    // Populate the new Frame
    Frame fr = new Frame();
    for (int i = 1; i < asts.length; i++) {
      switch (vals[i].type()) {
        case Val.FRM:
          fr.add(fr.makeCompatible(vals[i].getFrame()));
          break;
        case Val.FUN:
          throw H2O.unimpl();
        case Val.STR:
          throw H2O.unimpl();
        case Val.NUM:
          // Auto-expand scalars to fill every row
          double d = vals[i].getNum();
          fr.add(Double.toString(d), vec.makeCon(d));
          break;
        default:
          throw H2O.unimpl();
      }
    }
    if (clean) vec.remove();

    return new ValFrame(fr);
  }
Exemple #10
0
 /**
  * Global redistribution of a Frame (balancing of chunks), done by calling process (all-to-one +
  * one-to-all)
  *
  * @param fr Input frame
  * @param seed RNG seed
  * @param shuffle whether to shuffle the data globally
  * @return Shuffled frame
  */
 public static Frame shuffleAndBalance(
     final Frame fr, int splits, long seed, final boolean local, final boolean shuffle) {
   if ((fr.vecs()[0].nChunks() < splits || shuffle) && fr.numRows() > splits) {
     Vec[] vecs = fr.vecs().clone();
     Log.info("Load balancing dataset, splitting it into up to " + splits + " chunks.");
     long[] idx = null;
     if (shuffle) {
       idx = new long[splits];
       for (int r = 0; r < idx.length; ++r) idx[r] = r;
       Utils.shuffleArray(idx, seed);
     }
     Key keys[] = new Vec.VectorGroup().addVecs(vecs.length);
     final long rows_per_new_chunk = (long) (Math.ceil((double) fr.numRows() / splits));
     // loop over cols (same indexing for each column)
     Futures fs = new Futures();
     for (int col = 0; col < vecs.length; col++) {
       AppendableVec vec = new AppendableVec(keys[col]);
       // create outgoing chunks for this col
       NewChunk[] outCkg = new NewChunk[splits];
       for (int i = 0; i < splits; ++i) outCkg[i] = new NewChunk(vec, i);
       // loop over all incoming chunks
       for (int ckg = 0; ckg < vecs[col].nChunks(); ckg++) {
         final Chunk inCkg = vecs[col].chunkForChunkIdx(ckg);
         // loop over local rows of incoming chunks (fast path)
         for (int row = 0; row < inCkg._len; ++row) {
           int outCkgIdx =
               (int) ((inCkg._start + row) / rows_per_new_chunk); // destination chunk idx
           if (shuffle)
             outCkgIdx = (int) (idx[outCkgIdx]); // shuffle: choose a different output chunk
           assert (outCkgIdx >= 0 && outCkgIdx < splits);
           outCkg[outCkgIdx].addNum(inCkg.at0(row));
         }
       }
       for (int i = 0; i < outCkg.length; ++i) outCkg[i].close(i, fs);
       Vec t = vec.close(fs);
       t._domain = vecs[col]._domain;
       vecs[col] = t;
     }
     fs.blockForPending();
     Log.info("Load balancing done.");
     return new Frame(fr.names(), vecs);
   }
   return fr;
 }
Exemple #11
0
 @Override
 public String toString() {
   // Across
   String s = "{" + _names[0];
   long bs = _vecs[0].byteSize();
   for (int i = 1; i < _names.length; i++) {
     s += "," + _names[i];
     bs += _vecs[i].byteSize();
   }
   s += "}, " + PrettyPrint.bytes(bs) + "\n";
   // Down
   Vec v0 = firstReadable();
   if (v0 == null) return s;
   int nc = v0.nChunks();
   s += "Chunk starts: {";
   for (int i = 0; i < nc; i++) s += v0.elem2BV(i)._start + ",";
   s += "}";
   return s;
 }
Exemple #12
0
 /** Appends a named column, keeping the last Vec as the response */
 public void add(String name, Vec vec) {
   assert _vecs.length == 0 || anyVec().group().equals(vec.group());
   final int len = _names.length;
   _names = Arrays.copyOf(_names, len + 1);
   _vecs = Arrays.copyOf(_vecs, len + 1);
   _keys = Arrays.copyOf(_keys, len + 1);
   _names[len] = name;
   _vecs[len] = vec;
   _keys[len] = vec._key;
 }
Exemple #13
0
 @Override
 ValFrame apply(Env env, Env.StackHelp stk, AST asts[]) {
   Frame fr = stk.track(asts[1].exec(env)).getFrame();
   double frac = asts[2].exec(env).getNum();
   double nrow = fr.numRows() * frac;
   Vec vecs[] = fr.vecs();
   long[] idxs = new long[fr.numCols()];
   int j = 0;
   for (int i = 0; i < idxs.length; i++) if (vecs[i].naCnt() < nrow) idxs[j++] = i;
   Vec vec = Vec.makeVec(Arrays.copyOf(idxs, j), null, Vec.VectorGroup.VG_LEN1.addVec());
   return new ValFrame(new Frame(vec));
 }
Exemple #14
0
 /**
  * Compute the L2 norm for each row of the frame
  *
  * @param fr Input frame
  * @return Vec containing L2 values for each row, is in K-V store
  */
 public static Vec getL2(final Frame fr, final double[] scale) {
   // add workspace vec at end
   final int idx = fr.numCols();
   assert (scale.length == idx) : "Mismatch for number of columns";
   fr.add("L2", fr.anyVec().makeZero());
   Vec res;
   try {
     new MRTask2() {
       @Override
       public void map(Chunk[] cs) {
         for (int r = 0; r < cs[0]._len; r++) {
           double norm2 = 0;
           for (int i = 0; i < idx; i++) norm2 += Math.pow(cs[i].at0(r) * scale[i], 2);
           cs[idx].set0(r, Math.sqrt(norm2));
         }
       }
     }.doAll(fr);
   } finally {
     res = fr.remove(idx);
   }
   res.rollupStats();
   return res;
 }
Exemple #15
0
 @Override
 public void map(Chunk cs) {
   int idx = _chunkOffset + cs.cidx();
   Key ckey = Vec.chunkKey(_v._key, idx);
   if (_cmap != null) {
     assert !cs.hasFloat()
         : "Input chunk (" + cs.getClass() + ") has float, but is expected to be categorical";
     NewChunk nc = new NewChunk(_v, idx);
     // loop over rows and update ints for new domain mapping according to vecs[c].domain()
     for (int r = 0; r < cs._len; ++r) {
       if (cs.isNA(r)) nc.addNA();
       else nc.addNum(_cmap[(int) cs.at8(r)], 0);
     }
     nc.close(_fs);
   } else {
     DKV.put(ckey, cs.deepCopy(), _fs, true);
   }
 }
 public static Key makeByteVec(Key k, String... data) {
   byte[][] chunks = new byte[data.length][];
   long[] espc = new long[data.length + 1];
   for (int i = 0; i < chunks.length; ++i) {
     chunks[i] = data[i].getBytes();
     espc[i + 1] = espc[i] + data[i].length();
   }
   Futures fs = new Futures();
   Key key = Vec.newKey();
   ByteVec bv = new ByteVec(key, Vec.ESPC.rowLayout(key, espc));
   for (int i = 0; i < chunks.length; ++i) {
     Key chunkKey = bv.chunkKey(i);
     DKV.put(
         chunkKey,
         new Value(chunkKey, chunks[i].length, chunks[i], TypeMap.C1NCHUNK, Value.ICE),
         fs);
   }
   DKV.put(bv._key, bv, fs);
   Frame fr = new Frame(k, new String[] {"makeByteVec"}, new Vec[] {bv});
   DKV.put(k, fr, fs);
   fs.blockForPending();
   return k;
 }
Exemple #17
0
  @Override
  Val apply(Env env, Env.StackHelp stk, AST asts[]) {

    // Execute all args.  Find a canonical frame; all Frames must look like this one.
    // Each argument turns into either a Frame (whose rows are entirely
    // inlined) or a scalar (which is replicated across as a single row).
    Frame fr = null; // Canonical Frame; all frames have the same column count, types and names
    int nchks = 0; // Total chunks
    Val vals[] = new Val[asts.length]; // Computed AST results
    for (int i = 1; i < asts.length; i++) {
      vals[i] = stk.track(asts[i].exec(env));
      if (vals[i].isFrame()) {
        fr = vals[i].getFrame();
        nchks += fr.anyVec().nChunks(); // Total chunks
      } else nchks++; // One chunk per scalar
    }
    // No Frame, just a pile-o-scalars?
    Vec zz = null; // The zero-length vec for the zero-frame frame
    if (fr == null) { // Zero-length, 1-column, default name
      fr = new Frame(new String[] {Frame.defaultColName(0)}, new Vec[] {zz = Vec.makeZero(0)});
      if (asts.length == 1) return new ValFrame(fr);
    }

    // Verify all Frames are the same columns, names, and types.  Domains can vary, and will be the
    // union
    final Frame frs[] = new Frame[asts.length]; // Input frame
    final byte[] types = fr.types(); // Column types
    final int ncols = fr.numCols();
    final long[] espc = new long[nchks + 1]; // Compute a new layout!
    int coffset = 0;

    for (int i = 1; i < asts.length; i++) {
      Val val = vals[i]; // Save values computed for pass 2
      Frame fr0 =
          val.isFrame()
              ? val.getFrame()
              // Scalar: auto-expand into a 1-row frame
              : stk.track(new Frame(fr._names, Vec.makeCons(val.getNum(), 1L, fr.numCols())));

      // Check that all frames are compatible
      if (fr.numCols() != fr0.numCols())
        throw new IllegalArgumentException(
            "rbind frames must have all the same columns, found "
                + fr.numCols()
                + " and "
                + fr0.numCols()
                + " columns.");
      if (!Arrays.deepEquals(fr._names, fr0._names))
        throw new IllegalArgumentException(
            "rbind frames must have all the same column names, found "
                + Arrays.toString(fr._names)
                + " and "
                + Arrays.toString(fr0._names));
      if (!Arrays.equals(types, fr0.types()))
        throw new IllegalArgumentException(
            "rbind frames must have all the same column types, found "
                + Arrays.toString(types)
                + " and "
                + Arrays.toString(fr0.types()));

      frs[i] = fr0; // Save frame

      // Roll up the ESPC row counts
      long roffset = espc[coffset];
      long[] espc2 = fr0.anyVec().espc();
      for (int j = 1; j < espc2.length; j++) // Roll up the row counts
      espc[coffset + j] = (roffset + espc2[j]);
      coffset += espc2.length - 1; // Chunk offset
    }
    if (zz != null) zz.remove();

    // build up the new domains for each vec
    HashMap<String, Integer>[] dmap = new HashMap[types.length];
    String[][] domains = new String[types.length][];
    int[][][] cmaps = new int[types.length][][];
    for (int k = 0; k < types.length; ++k) {
      dmap[k] = new HashMap<>();
      int c = 0;
      byte t = types[k];
      if (t == Vec.T_CAT) {
        int[][] maps = new int[frs.length][];
        for (int i = 1; i < frs.length; i++) {
          maps[i] = new int[frs[i].vec(k).domain().length];
          for (int j = 0; j < maps[i].length; j++) {
            String s = frs[i].vec(k).domain()[j];
            if (!dmap[k].containsKey(s)) dmap[k].put(s, maps[i][j] = c++);
            else maps[i][j] = dmap[k].get(s);
          }
        }
        cmaps[k] = maps;
      } else {
        cmaps[k] = new int[frs.length][];
      }
      domains[k] = c == 0 ? null : new String[c];
      for (Map.Entry<String, Integer> e : dmap[k].entrySet()) domains[k][e.getValue()] = e.getKey();
    }

    // Now make Keys for the new Vecs
    Key<Vec>[] keys = fr.anyVec().group().addVecs(fr.numCols());
    Vec[] vecs = new Vec[fr.numCols()];
    int rowLayout = Vec.ESPC.rowLayout(keys[0], espc);
    for (int i = 0; i < vecs.length; i++)
      vecs[i] = new Vec(keys[i], rowLayout, domains[i], types[i]);

    // Do the row-binds column-by-column.
    // Switch to F/J thread for continuations
    ParallelRbinds t;
    H2O.submitTask(t = new ParallelRbinds(frs, espc, vecs, cmaps)).join();
    return new ValFrame(new Frame(fr.names(), t._vecs));
  }
Exemple #18
0
  /**
   * The train/valid Frame instances are sorted by categorical (themselves sorted by cardinality
   * greatest to least) with all numerical columns following. The response column(s) are placed at
   * the end.
   *
   * <p>Interactions: 1. Num-Num (Note: N(0,1) * N(0,1) ~ N(0,1) ) 2. Num-Enum 3. Enum-Enum
   *
   * <p>Interactions are produced on the fly and are dense (in all 3 cases). Consumers of DataInfo
   * should not have to care how these interactions are generated. Any heuristic using the fullN
   * value should continue functioning the same.
   *
   * <p>Interactions are specified in two ways: A. As a list of pairs of column indices. B. As a
   * list of pairs of column indices with limited enums.
   */
  public DataInfo(
      Frame train,
      Frame valid,
      int nResponses,
      boolean useAllFactorLevels,
      TransformType predictor_transform,
      TransformType response_transform,
      boolean skipMissing,
      boolean imputeMissing,
      boolean missingBucket,
      boolean weight,
      boolean offset,
      boolean fold,
      Model.InteractionPair[] interactions) {
    super(Key.<DataInfo>make());
    _valid = valid != null;
    assert predictor_transform != null;
    assert response_transform != null;
    _offset = offset;
    _weights = weight;
    _fold = fold;
    assert !(skipMissing && imputeMissing) : "skipMissing and imputeMissing cannot both be true";
    _skipMissing = skipMissing;
    _imputeMissing = imputeMissing;
    _predictor_transform = predictor_transform;
    _response_transform = response_transform;
    _responses = nResponses;
    _useAllFactorLevels = useAllFactorLevels;
    _interactions = interactions;

    // create dummy InteractionWrappedVecs and shove them onto the front
    if (_interactions != null) {
      _interactionVecs = new int[_interactions.length];
      train =
          Model.makeInteractions(
                  train,
                  false,
                  _interactions,
                  _useAllFactorLevels,
                  _skipMissing,
                  predictor_transform == TransformType.STANDARDIZE)
              .add(train);
      if (valid != null)
        valid =
            Model.makeInteractions(
                    valid,
                    true,
                    _interactions,
                    _useAllFactorLevels,
                    _skipMissing,
                    predictor_transform == TransformType.STANDARDIZE)
                .add(valid); // FIXME: should be using the training subs/muls!
    }

    _permutation = new int[train.numCols()];
    final Vec[] tvecs = train.vecs();

    // Count categorical-vs-numerical
    final int n = tvecs.length - _responses - (offset ? 1 : 0) - (weight ? 1 : 0) - (fold ? 1 : 0);
    int[] nums = MemoryManager.malloc4(n);
    int[] cats = MemoryManager.malloc4(n);
    int nnums = 0, ncats = 0;
    for (int i = 0; i < n; ++i)
      if (tvecs[i].isCategorical()) cats[ncats++] = i;
      else nums[nnums++] = i;

    _nums = nnums;
    _cats = ncats;
    _catLvls = new int[ncats][];

    // sort the cats in the decreasing order according to their size
    for (int i = 0; i < ncats; ++i)
      for (int j = i + 1; j < ncats; ++j)
        if (tvecs[cats[i]].domain().length < tvecs[cats[j]].domain().length) {
          int x = cats[i];
          cats[i] = cats[j];
          cats[j] = x;
        }
    String[] names = new String[train.numCols()];
    Vec[] tvecs2 = new Vec[train.numCols()];

    // Compute the cardinality of each cat
    _catModes = new int[ncats];
    _catOffsets = MemoryManager.malloc4(ncats + 1);
    _catMissing = new boolean[ncats];
    int len = _catOffsets[0] = 0;
    int interactionIdx = 0; // simple index into the _interactionVecs array

    ArrayList<Integer> interactionIds;
    if (_interactions == null) {
      interactionIds = new ArrayList<>();
      for (int i = 0; i < tvecs.length; ++i)
        if (tvecs[i] instanceof InteractionWrappedVec) {
          interactionIds.add(i);
        }
      _interactionVecs = new int[interactionIds.size()];
      for (int i = 0; i < _interactionVecs.length; ++i) _interactionVecs[i] = interactionIds.get(i);
    }
    for (int i = 0; i < ncats; ++i) {
      names[i] = train._names[cats[i]];
      Vec v = (tvecs2[i] = tvecs[cats[i]]);
      _catMissing[i] = missingBucket; // needed for test time
      if (v instanceof InteractionWrappedVec) {
        if (_interactions != null) _interactions[interactionIdx].vecIdx = i;
        _interactionVecs[interactionIdx++] =
            i; // i (and not cats[i]) because this is the index in _adaptedFrame
        _catOffsets[i + 1] = (len += v.domain().length + (missingBucket ? 1 : 0));
      } else
        _catOffsets[i + 1] =
            (len +=
                v.domain().length
                    - (useAllFactorLevels ? 0 : 1)
                    + (missingBucket ? 1 : 0)); // missing values turn into a new factor level
      _catModes[i] =
          imputeMissing ? imputeCat(train.vec(cats[i])) : _catMissing[i] ? v.domain().length : -100;
      _permutation[i] = cats[i];
    }
    _numMeans = new double[nnums];
    _numOffsets = MemoryManager.malloc4(nnums + 1);
    _numOffsets[0] = len;
    boolean isIWV; // is InteractionWrappedVec?
    for (int i = 0; i < nnums; ++i) {
      names[i + ncats] = train._names[nums[i]];
      Vec v = train.vec(nums[i]);
      tvecs2[i + ncats] = v;
      isIWV = v instanceof InteractionWrappedVec;
      if (isIWV) {
        if (null != _interactions) _interactions[interactionIdx].vecIdx = i + ncats;
        _interactionVecs[interactionIdx++] = i + ncats;
      }
      _numOffsets[i + 1] = (len += (isIWV ? ((InteractionWrappedVec) v).expandedLength() : 1));
      _numMeans[i] = train.vec(nums[i]).mean();
      _permutation[i + ncats] = nums[i];
    }
    for (int i = names.length - nResponses - (weight ? 1 : 0) - (offset ? 1 : 0) - (fold ? 1 : 0);
        i < names.length;
        ++i) {
      names[i] = train._names[i];
      tvecs2[i] = train.vec(i);
    }
    _adaptedFrame = new Frame(names, tvecs2);
    train.restructure(names, tvecs2);
    if (valid != null) valid.restructure(names, valid.vecs(names));
    //    _adaptedFrame = train;

    setPredictorTransform(predictor_transform);
    if (_responses > 0) setResponseTransform(response_transform);
  }
Exemple #19
0
 public static int imputeCat(Vec v) {
   if (v.isCategorical()) return v.mode();
   return (int) Math.round(v.mean());
 }
Exemple #20
0
  public Frame deepSlice(Object orows, Object ocols) {
    // ocols is either a long[] or a Frame-of-1-Vec
    long[] cols;
    if (ocols == null) {
      cols = (long[]) ocols;
      assert cols == null;
    } else {
      if (ocols instanceof long[]) {
        cols = (long[]) ocols;
      } else if (ocols instanceof Frame) {
        Frame fr = (Frame) ocols;
        if (fr.numCols() != 1) {
          throw new IllegalArgumentException(
              "Columns Frame must have only one column (actually has "
                  + fr.numCols()
                  + " columns)");
        }

        long n = fr.anyVec().length();
        if (n > MAX_EQ2_COLS) {
          throw new IllegalArgumentException(
              "Too many requested columns (requested " + n + ", max " + MAX_EQ2_COLS + ")");
        }

        cols = new long[(int) n];
        Vec v = fr._vecs[0];
        for (long i = 0; i < v.length(); i++) {
          cols[(int) i] = v.at8(i);
        }
      } else {
        throw new IllegalArgumentException(
            "Columns is specified by an unsupported data type ("
                + ocols.getClass().getName()
                + ")");
      }
    }

    // Since cols is probably short convert to a positive list.
    int c2[] = null;
    if (cols == null) {
      c2 = new int[numCols()];
      for (int i = 0; i < c2.length; i++) c2[i] = i;
    } else if (cols.length == 0) {
      c2 = new int[0];
    } else if (cols[0] > 0) {
      c2 = new int[cols.length];
      for (int i = 0; i < cols.length; i++)
        c2[i] = (int) cols[i] - 1; // Convert 1-based cols to zero-based
    } else {
      c2 = new int[numCols() - cols.length];
      int j = 0;
      for (int i = 0; i < numCols(); i++) {
        if (j >= cols.length || i < (-cols[j] - 1)) c2[i - j] = i;
        else j++;
      }
    }
    for (int i = 0; i < c2.length; i++)
      if (c2[i] >= numCols())
        throw new IllegalArgumentException(
            "Trying to select column " + c2[i] + " but only " + numCols() + " present.");
    if (c2.length == 0)
      throw new IllegalArgumentException(
          "No columns selected (did you try to select column 0 instead of column 1?)");

    // Do Da Slice
    // orows is either a long[] or a Vec
    if (orows == null)
      return new DeepSlice((long[]) orows, c2)
          .doAll(c2.length, this)
          .outputFrame(names(c2), domains(c2));
    else if (orows instanceof long[]) {
      final long CHK_ROWS = 1000000;
      long[] rows = (long[]) orows;
      if (rows.length == 0)
        return new DeepSlice(rows, c2).doAll(c2.length, this).outputFrame(names(c2), domains(c2));
      if (rows[0] < 0)
        return new DeepSlice(rows, c2).doAll(c2.length, this).outputFrame(names(c2), domains(c2));
      // Vec'ize the index array
      AppendableVec av = new AppendableVec("rownames");
      int r = 0;
      int c = 0;
      while (r < rows.length) {
        NewChunk nc = new NewChunk(av, c);
        long end = Math.min(r + CHK_ROWS, rows.length);
        for (; r < end; r++) {
          nc.addNum(rows[r]);
        }
        nc.close(c++, null);
      }
      Vec c0 = av.close(null); // c0 is the row index vec
      Frame fr2 =
          new Slice(c2, this)
              .doAll(c2.length, new Frame(new String[] {"rownames"}, new Vec[] {c0}))
              .outputFrame(names(c2), domains(c2));
      UKV.remove(c0._key); // Remove hidden vector
      return fr2;
    }
    Frame frows = (Frame) orows;
    Vec vrows = frows.anyVec();
    // It's a compatible Vec; use it as boolean selector.
    // Build column names for the result.
    Vec[] vecs = new Vec[c2.length + 1];
    String[] names = new String[c2.length + 1];
    for (int i = 0; i < c2.length; ++i) {
      vecs[i] = _vecs[c2[i]];
      names[i] = _names[c2[i]];
    }
    vecs[c2.length] = vrows;
    names[c2.length] = "predicate";
    return new DeepSelect()
        .doAll(c2.length, new Frame(names, vecs))
        .outputFrame(names(c2), domains(c2));
  }
Exemple #21
0
 private void setTransform(
     TransformType t, double[] normMul, double[] normSub, int vecStart, int n) {
   int idx = 0; // idx!=i when interactions are in play, otherwise, it's just 'i'
   for (int i = 0; i < n; ++i) {
     Vec v = _adaptedFrame.vec(vecStart + i);
     boolean isIWV = isInteractionVec(vecStart + i);
     switch (t) {
       case STANDARDIZE:
         normMul[idx] = (v.sigma() != 0) ? 1.0 / v.sigma() : 1.0;
         if (isIWV) for (int j = idx + 1; j < nextNumericIdx(i) + idx; j++) normMul[j] = 1;
         normSub[idx] = v.mean();
         break;
       case NORMALIZE:
         normMul[idx] = (v.max() - v.min() > 0) ? 1.0 / (v.max() - v.min()) : 1.0;
         if (isIWV) for (int j = idx + 1; j < nextNumericIdx(i) + idx; j++) normMul[j] = 1;
         normSub[idx] = v.mean();
         break;
       case DEMEAN:
         normMul[idx] = 1;
         if (isIWV) for (int j = idx + 1; j < nextNumericIdx(i) + idx; j++) normMul[j] = 1;
         normSub[idx] = v.mean();
         break;
       case DESCALE:
         normMul[idx] = (v.sigma() != 0) ? 1.0 / v.sigma() : 1.0;
         if (isIWV) for (int j = idx + 1; j < nextNumericIdx(i) + idx; j++) normMul[j] = 1;
         normSub[idx] = 0;
         break;
       default:
         throw H2O.unimpl();
     }
     assert !Double.isNaN(normMul[idx]);
     assert !Double.isNaN(normSub[idx]);
     idx = isIWV ? (idx + nextNumericIdx(i)) : (idx + 1);
   }
 }
Exemple #22
0
 public ClassDist(final Vec label) {
   super(label.domain().length);
 }
Exemple #23
0
 /** Returns the first readable vector. */
 public Vec anyVec() {
   if (_col0 != null) return _col0;
   for (Vec v : vecs()) if (v.readable()) return (_col0 = v);
   return null;
 }
Exemple #24
0
  /**
   * Stratified sampling for classifiers
   *
   * @param fr Input frame
   * @param label Label vector (must be enum)
   * @param sampling_ratios Optional: array containing the requested sampling ratios per class (in
   *     order of domains), will be overwritten if it contains all 0s
   * @param maxrows Maximum number of rows in the returned frame
   * @param seed RNG seed for sampling
   * @param allowOversampling Allow oversampling of minority classes
   * @param verbose Whether to print verbose info
   * @return Sampled frame, with approximately the same number of samples from each class (or given
   *     by the requested sampling ratios)
   */
  public static Frame sampleFrameStratified(
      final Frame fr,
      Vec label,
      float[] sampling_ratios,
      long maxrows,
      final long seed,
      final boolean allowOversampling,
      final boolean verbose) {
    if (fr == null) return null;
    assert (label.isEnum());
    assert (maxrows >= label.domain().length);

    long[] dist = new ClassDist(label).doAll(label).dist();
    assert (dist.length > 0);
    Log.info(
        "Doing stratified sampling for data set containing "
            + fr.numRows()
            + " rows from "
            + dist.length
            + " classes. Oversampling: "
            + (allowOversampling ? "on" : "off"));
    if (verbose) {
      for (int i = 0; i < dist.length; ++i) {
        Log.info(
            "Class "
                + label.domain(i)
                + ": count: "
                + dist[i]
                + " prior: "
                + (float) dist[i] / fr.numRows());
      }
    }

    // create sampling_ratios for class balance with max. maxrows rows (fill existing array if not
    // null)
    if (sampling_ratios == null
        || (Utils.minValue(sampling_ratios) == 0 && Utils.maxValue(sampling_ratios) == 0)) {
      // compute sampling ratios to achieve class balance
      if (sampling_ratios == null) {
        sampling_ratios = new float[dist.length];
      }
      assert (sampling_ratios.length == dist.length);
      for (int i = 0; i < dist.length; ++i) {
        sampling_ratios[i] =
            ((float) fr.numRows() / label.domain().length) / dist[i]; // prior^-1 / num_classes
      }
      final float inv_scale =
          Utils.minValue(
              sampling_ratios); // majority class has lowest required oversampling factor to achieve
                                // balance
      if (!Float.isNaN(inv_scale) && !Float.isInfinite(inv_scale))
        Utils.div(
            sampling_ratios,
            inv_scale); // want sampling_ratio 1.0 for majority class (no downsampling)
    }

    if (!allowOversampling) {
      for (int i = 0; i < sampling_ratios.length; ++i) {
        sampling_ratios[i] = Math.min(1.0f, sampling_ratios[i]);
      }
    }

    // given these sampling ratios, and the original class distribution, this is the expected number
    // of resulting rows
    float numrows = 0;
    for (int i = 0; i < sampling_ratios.length; ++i) {
      numrows += sampling_ratios[i] * dist[i];
    }
    final long actualnumrows = Math.min(maxrows, Math.round(numrows)); // cap #rows at maxrows
    assert (actualnumrows
        >= 0); // can have no matching rows in case of sparse data where we had to fill in a
               // makeZero() vector
    Log.info("Stratified sampling to a total of " + String.format("%,d", actualnumrows) + " rows.");

    if (actualnumrows != numrows) {
      Utils.mult(
          sampling_ratios,
          (float) actualnumrows
              / numrows); // adjust the sampling_ratios by the global rescaling factor
      if (verbose)
        Log.info(
            "Downsampling majority class by "
                + (float) actualnumrows / numrows
                + " to limit number of rows to "
                + String.format("%,d", maxrows));
    }
    Log.info(
        "Majority class ("
            + label.domain()[Utils.minIndex(sampling_ratios)].toString()
            + ") sampling ratio: "
            + Utils.minValue(sampling_ratios));
    Log.info(
        "Minority class ("
            + label.domain()[Utils.maxIndex(sampling_ratios)].toString()
            + ") sampling ratio: "
            + Utils.maxValue(sampling_ratios));

    return sampleFrameStratified(fr, label, sampling_ratios, seed, verbose);
  }
Exemple #25
0
 public int find(Vec vec) {
   for (int i = 0; i < _vecs.length; i++) if (vec.equals(_vecs[i])) return i;
   return -1;
 }
Exemple #26
0
 /** Returns the first readable vector. */
 public Vec firstReadable() {
   if (_col0 != null) return _col0;
   for (Vec v : _vecs) if (v != null && v.readable()) return (_col0 = v);
   return null;
 }
Exemple #27
0
  // internal version with repeat counter
  // currently hardcoded to do up to 10 tries to get a row from each class, which can be impossible
  // for certain wrong sampling ratios
  private static Frame sampleFrameStratified(
      final Frame fr,
      Vec label,
      final float[] sampling_ratios,
      final long seed,
      final boolean debug,
      int count) {
    if (fr == null) return null;
    assert (label.isEnum());
    assert (sampling_ratios != null && sampling_ratios.length == label.domain().length);
    final int labelidx = fr.find(label); // which column is the label?
    assert (labelidx >= 0);

    final boolean poisson = false; // beta feature

    Frame r =
        new MRTask2() {
          @Override
          public void map(Chunk[] cs, NewChunk[] ncs) {
            final Random rng = getDeterRNG(seed + cs[0].cidx());
            for (int r = 0; r < cs[0]._len; r++) {
              if (cs[labelidx].isNA0(r)) continue; // skip missing labels
              final int label = (int) cs[labelidx].at80(r);
              assert (sampling_ratios.length > label && label >= 0);
              int sampling_reps;
              if (poisson) {
                sampling_reps = Utils.getPoisson(sampling_ratios[label], rng);
              } else {
                final float remainder = sampling_ratios[label] - (int) sampling_ratios[label];
                sampling_reps =
                    (int) sampling_ratios[label] + (rng.nextFloat() < remainder ? 1 : 0);
              }
              for (int i = 0; i < ncs.length; i++) {
                for (int j = 0; j < sampling_reps; ++j) {
                  ncs[i].addNum(cs[i].at0(r));
                }
              }
            }
          }
        }.doAll(fr.numCols(), fr).outputFrame(fr.names(), fr.domains());

    // Confirm the validity of the distribution
    long[] dist = new ClassDist(r.vecs()[labelidx]).doAll(r.vecs()[labelidx]).dist();

    // if there are no training labels in the test set, then there is no point in sampling the test
    // set
    if (dist == null) return fr;

    if (debug) {
      long sumdist = Utils.sum(dist);
      Log.info("After stratified sampling: " + sumdist + " rows.");
      for (int i = 0; i < dist.length; ++i) {
        Log.info(
            "Class "
                + r.vecs()[labelidx].domain(i)
                + ": count: "
                + dist[i]
                + " sampling ratio: "
                + sampling_ratios[i]
                + " actual relative frequency: "
                + (float) dist[i] / sumdist * dist.length);
      }
    }

    // Re-try if we didn't get at least one example from each class
    if (Utils.minValue(dist) == 0 && count < 10) {
      Log.info(
          "Re-doing stratified sampling because not all classes were represented (unlucky draw).");
      r.delete();
      return sampleFrameStratified(fr, label, sampling_ratios, seed + 1, debug, ++count);
    }

    // shuffle intra-chunk
    Frame shuffled = shuffleFramePerChunk(r, seed + 0x580FF13);
    r.delete();

    return shuffled;
  }