/** * Creates a new ValueArray with classes. New ValueArray is not aligned with source one * unfortunately so have to send results to each chunk owner using Atomic. */ @Override public void map(Key key) { assert key.home(); if (Job.isRunning(_job.self())) { ValueArray va = DKV.get(_arykey).get(); AutoBuffer bits = va.getChunk(key); long startRow = va.startRow(ValueArray.getChunkIndex(key)); int rows = va.rpc(ValueArray.getChunkIndex(key)); int rpc = (int) (ValueArray.CHUNK_SZ / ROW_SIZE); long chunk = ValueArray.chknum(startRow, va.numRows(), ROW_SIZE); long updatedChk = chunk; long updatedRow = startRow; double[] values = new double[_cols.length - 1]; ClusterDist cd = new ClusterDist(); int[] clusters = new int[rows]; int count = 0; for (int row = 0; row < rows; row++) { KMeans.datad(va, bits, row, _cols, _normalized, values); KMeans.closest(_clusters, values, cd); chunk = ValueArray.chknum(startRow + row, va.numRows(), ROW_SIZE); if (chunk != updatedChk) { updateClusters(clusters, count, updatedChk, va.numRows(), rpc, updatedRow); updatedChk = chunk; updatedRow = startRow + row; count = 0; } clusters[count++] = cd._cluster; } if (count > 0) updateClusters(clusters, count, chunk, va.numRows(), rpc, updatedRow); _job.updateProgress(1); } _job = null; _arykey = null; _cols = null; _clusters = null; }
@Override public void map(Key key) { _rows = new long[_clusters.length]; _dist = new double[_clusters.length]; assert key.home(); ValueArray va = DKV.get(_arykey).get(); AutoBuffer bits = va.getChunk(key); int rows = va.rpc(ValueArray.getChunkIndex(key)); double[] values = new double[_cols.length - 1]; ClusterDist cd = new ClusterDist(); for (int row = 0; row < rows; row++) { KMeans.datad(va, bits, row, _cols, _normalized, values); KMeans.closest(_clusters, values, cd); _rows[cd._cluster]++; _dist[cd._cluster] += cd._dist; } _arykey = null; _cols = null; _clusters = null; }
/** * Map function for distributed parsing of the CSV files. * * <p>In first phase it calculates the min, max, means, encodings and other statistics about the * dataset, determines the number of columns. * * <p>The second pass then encodes the parsed dataset to the result key, splitting it into equal * sized chunks. */ @Override public void map(Key key) { try { Key aryKey = null; boolean arraylet = key._kb[0] == Key.ARRAYLET_CHUNK; boolean skipFirstLine = _skipFirstLine; if (arraylet) { aryKey = ValueArray.getArrayKey(key); _chunkId = ValueArray.getChunkIndex(key); skipFirstLine = skipFirstLine || (ValueArray.getChunkIndex(key) != 0); } switch (_phase) { case ONE: assert (_ncolumns != 0); // initialize the column statistics phaseOneInitialize(); // perform the parse CsvParser p = new CsvParser(aryKey, _ncolumns, _sep, _decSep, this, skipFirstLine); p.parse(key); if (arraylet) { long idx = ValueArray.getChunkIndex(key); int idx2 = (int) idx; assert idx2 == idx; assert (_nrows[idx2] == 0) : idx + ": " + Arrays.toString(_nrows) + " (" + _nrows[idx2] + " -- " + _myrows + ")"; _nrows[idx2] = _myrows; } break; case TWO: assert (_ncolumns != 0); // initialize statistics - invalid rows, sigma and row size phaseTwoInitialize(); // calculate the first row and the number of rows to parse int firstRow = 0; int lastRow = _myrows; _myrows = 0; if (arraylet) { long origChunkIdx = ValueArray.getChunkIndex(key); firstRow = (origChunkIdx == 0) ? 0 : _nrows[(int) origChunkIdx - 1]; lastRow = _nrows[(int) origChunkIdx]; } int rowsToParse = lastRow - firstRow; // create the output streams _outputStreams2 = createRecords(firstRow, rowsToParse); assert (_outputStreams2.length > 0); _ab = _outputStreams2[0].initialize(); // perform the second parse pass CsvParser p2 = new CsvParser(aryKey, _ncolumns, _sep, _decSep, this, skipFirstLine); p2.parse(key); // store the last stream if not stored during the parse if (_ab != null) _outputStreams2[_outputIdx].store(); break; default: assert (false); } ParseStatus.update(_resultKey, DKV.get(key).length(), _phase); } catch (Exception e) { e.printStackTrace(); _error = e.getMessage(); } }