Exemple #1
0
 @Test
 public void testDomains() {
   Frame frame = parse_test_file("smalldata/junit/weather.csv");
   for (String s : new String[] {"MaxWindSpeed", "RelHumid9am", "Cloud9am"}) {
     Vec v = frame.vec(s);
     Vec newV = v.toCategoricalVec();
     frame.remove(s);
     frame.add(s, newV);
     v.remove();
   }
   DKV.put(frame);
   AggregatorModel.AggregatorParameters parms = new AggregatorModel.AggregatorParameters();
   parms._train = frame._key;
   parms._radius_scale = 10;
   AggregatorModel agg = new Aggregator(parms).trainModel().get();
   Frame output = agg._output._output_frame.get();
   Assert.assertTrue(output.numRows() < 0.5 * frame.numRows());
   boolean same = true;
   for (int i = 0; i < frame.numCols(); ++i) {
     if (frame.vec(i).isCategorical()) {
       same = (frame.domains()[i].length == output.domains()[i].length);
       if (!same) break;
     }
   }
   frame.remove();
   output.remove();
   agg.remove();
   Assert.assertFalse(same);
 }
Exemple #2
0
 static Frame exec_str(String str, String id) {
   Val val = Exec.exec(str);
   switch (val.type()) {
     case Val.FRM:
       Frame fr = val.getFrame();
       Key k = Key.make(id);
       // Smart delete any prior top-level result
       Iced i = DKV.getGet(k);
       if (i instanceof Lockable) ((Lockable) i).delete();
       else if (i instanceof Keyed) ((Keyed) i).remove();
       else if (i != null)
         throw new IllegalArgumentException("Attempting to overright an unexpected key");
       DKV.put(fr = new Frame(k, fr._names, fr.vecs()));
       System.out.println(fr);
       checkSaneFrame();
       return fr;
     case Val.NUM:
       System.out.println("num= " + val.getNum());
       assert id == null;
       checkSaneFrame();
       return null;
     case Val.STR:
       System.out.println("str= " + val.getStr());
       assert id == null;
       checkSaneFrame();
       return null;
     default:
       throw water.H2O.fail();
   }
 }
 public GLMModelV3 make_model(int version, MakeGLMModelV3 args) {
   GLMModel model = DKV.getGet(args.model.key());
   if (model == null) throw new IllegalArgumentException("missing source model " + args.model);
   String[] names = model._output.coefficientNames();
   Map<String, Double> coefs = model.coefficients();
   for (int i = 0; i < args.names.length; ++i) coefs.put(args.names[i], args.beta[i]);
   double[] beta = model.beta().clone();
   for (int i = 0; i < beta.length; ++i) beta[i] = coefs.get(names[i]);
   GLMModel m =
       new GLMModel(
           args.dest != null ? args.dest.key() : Key.make(),
           model._parms,
           null,
           new double[] {.5},
           Double.NaN,
           Double.NaN,
           -1);
   DataInfo dinfo = model.dinfo();
   dinfo.setPredictorTransform(TransformType.NONE);
   // GLMOutput(DataInfo dinfo, String[] column_names, String[][] domains, String[]
   // coefficient_names, boolean binomial) {
   m._output =
       new GLMOutput(
           model.dinfo(),
           model._output._names,
           model._output._domains,
           model._output.coefficientNames(),
           model._output._binomial,
           beta);
   DKV.put(m._key, m);
   GLMModelV3 res = new GLMModelV3();
   res.fillFromImpl(m);
   return res;
 }
Exemple #4
0
  @Override
  protected Frame predictScoreImpl(Frame orig, Frame adaptedFr, String destination_key) {
    Frame adaptFrm = new Frame(adaptedFr);
    for (int i = 0; i < _parms._k; i++)
      adaptFrm.add("PC" + String.valueOf(i + 1), adaptFrm.anyVec().makeZero());

    new MRTask() {
      @Override
      public void map(Chunk chks[]) {
        double tmp[] = new double[_output._names.length];
        double preds[] = new double[_parms._k];
        for (int row = 0; row < chks[0]._len; row++) {
          double p[] = score0(chks, row, tmp, preds);
          for (int c = 0; c < preds.length; c++) chks[_output._names.length + c].set(row, p[c]);
        }
      }
    }.doAll(adaptFrm);

    // Return the projection into principal component space
    int x = _output._names.length, y = adaptFrm.numCols();
    Frame f =
        adaptFrm.extractFrame(
            x, y); // this will call vec_impl() and we cannot call the delete() below just yet

    f =
        new Frame(
            (null == destination_key ? Key.make() : Key.make(destination_key)),
            f.names(),
            f.vecs());
    DKV.put(f);
    makeMetricBuilder(null).makeModelMetrics(this, orig);
    return f;
  }
Exemple #5
0
 private static void addFolder(FileSystem fs, Path p, JsonArray succeeded, JsonArray failed) {
   try {
     if (fs == null) return;
     for (FileStatus file : fs.listStatus(p)) {
       Path pfs = file.getPath();
       if (file.isDir()) {
         addFolder(fs, pfs, succeeded, failed);
       } else {
         Key k = Key.make(pfs.toString());
         long size = file.getLen();
         Value val = null;
         if (pfs.getName().endsWith(Extensions.JSON)) {
           JsonParser parser = new JsonParser();
           JsonObject json = parser.parse(new InputStreamReader(fs.open(pfs))).getAsJsonObject();
           JsonElement v = json.get(Constants.VERSION);
           if (v == null) throw new RuntimeException("Missing version");
           JsonElement type = json.get(Constants.TYPE);
           if (type == null) throw new RuntimeException("Missing type");
           Class c = Class.forName(type.getAsString());
           OldModel model = (OldModel) c.newInstance();
           model.fromJson(json);
         } else if (pfs.getName().endsWith(Extensions.HEX)) { // Hex file?
           FSDataInputStream s = fs.open(pfs);
           int sz = (int) Math.min(1L << 20, size); // Read up to the 1st meg
           byte[] mem = MemoryManager.malloc1(sz);
           s.readFully(mem);
           // Convert to a ValueArray (hope it fits in 1Meg!)
           ValueArray ary = new ValueArray(k, 0).read(new AutoBuffer(mem));
           val = new Value(k, ary, Value.HDFS);
         } else if (size >= 2 * ValueArray.CHUNK_SZ) {
           val =
               new Value(
                   k,
                   new ValueArray(k, size),
                   Value.HDFS); // ValueArray byte wrapper over a large file
         } else {
           val = new Value(k, (int) size, Value.HDFS); // Plain Value
           val.setdsk();
         }
         DKV.put(k, val);
         Log.info("PersistHdfs: DKV.put(" + k + ")");
         JsonObject o = new JsonObject();
         o.addProperty(Constants.KEY, k.toString());
         o.addProperty(Constants.FILE, pfs.toString());
         o.addProperty(Constants.VALUE_SIZE, file.getLen());
         succeeded.add(o);
       }
     }
   } catch (Exception e) {
     Log.err(e);
     JsonObject o = new JsonObject();
     o.addProperty(Constants.FILE, p.toString());
     o.addProperty(Constants.ERROR, e.getMessage());
     failed.add(o);
   }
 }
  @Test
  public void testCategoricalProstate() throws InterruptedException, ExecutionException {
    GLRM job = null;
    GLRMModel model = null;
    Frame train = null;
    final int[] cats = new int[] {1, 3, 4, 5}; // Categoricals: CAPSULE, RACE, DPROS, DCAPS

    try {
      Scope.enter();
      train = parse_test_file(Key.make("prostate.hex"), "smalldata/logreg/prostate.csv");
      for (int i = 0; i < cats.length; i++)
        Scope.track(train.replace(cats[i], train.vec(cats[i]).toCategoricalVec())._key);
      train.remove("ID").remove();
      DKV.put(train._key, train);

      GLRMParameters parms = new GLRMParameters();
      parms._train = train._key;
      parms._k = 8;
      parms._gamma_x = parms._gamma_y = 0.1;
      parms._regularization_x = GLRMModel.GLRMParameters.Regularizer.Quadratic;
      parms._regularization_y = GLRMModel.GLRMParameters.Regularizer.Quadratic;
      parms._init = GLRM.Initialization.PlusPlus;
      parms._transform = DataInfo.TransformType.STANDARDIZE;
      parms._recover_svd = false;
      parms._max_iterations = 200;

      try {
        job = new GLRM(parms);
        model = job.trainModel().get();
        Log.info(
            "Iteration "
                + model._output._iterations
                + ": Objective value = "
                + model._output._objective);
        model.score(train).delete();
        ModelMetricsGLRM mm = (ModelMetricsGLRM) ModelMetrics.getFromDKV(model, train);
        Log.info(
            "Numeric Sum of Squared Error = "
                + mm._numerr
                + "\tCategorical Misclassification Error = "
                + mm._caterr);
      } catch (Throwable t) {
        t.printStackTrace();
        throw new RuntimeException(t);
      } finally {
        job.remove();
      }
    } catch (Throwable t) {
      t.printStackTrace();
      throw new RuntimeException(t);
    } finally {
      if (train != null) train.delete();
      if (model != null) model.delete();
      Scope.exit();
    }
  }
Exemple #7
0
 // Close all AppendableVec
 public Futures closeAppendables(Futures fs) {
   _col0 = null; // Reset cache
   int len = vecs().length;
   for (int i = 0; i < len; i++) {
     Vec v = _vecs[i];
     if (v instanceof AppendableVec)
       DKV.put(_keys[i], _vecs[i] = ((AppendableVec) v).close(fs), fs);
   }
   return fs;
 }
Exemple #8
0
 public Vec replace(int col, Vec nv) {
   assert col < _names.length;
   Vec rv = vecs()[col];
   assert rv.group().equals(nv.group());
   _vecs[col] = nv;
   _keys[col] = nv._key;
   if (DKV.get(nv._key) == null) // If not already in KV, put it there
   DKV.put(nv._key, nv);
   return rv;
 }
Exemple #9
0
  // @Ignore("PUBDEV-1643")
  @Test
  public void testDuplicatesCarsGrid() {
    Grid grid = null;
    Frame fr = null;
    Vec old = null;
    try {
      fr = parse_test_file("smalldata/junit/cars_20mpg.csv");
      fr.remove("name").remove(); // Remove unique id
      old = fr.remove("economy");
      fr.add("economy", old); // response to last column
      DKV.put(fr);

      // Setup random hyperparameter search space
      HashMap<String, Object[]> hyperParms =
          new HashMap<String, Object[]>() {
            {
              put("_ntrees", new Integer[] {5, 5});
              put("_max_depth", new Integer[] {2, 2});
              put("_mtries", new Integer[] {-1, -1});
              put("_sample_rate", new Double[] {.1, .1});
            }
          };

      // Fire off a grid search
      DRFModel.DRFParameters params = new DRFModel.DRFParameters();
      params._train = fr._key;
      params._response_column = "economy";

      // Get the Grid for this modeling class and frame
      Job<Grid> gs = GridSearch.startGridSearch(null, params, hyperParms);
      grid = gs.get();

      // Check that duplicate model have not been constructed
      Model[] models = grid.getModels();
      assertTrue("Number of returned models has to be > 0", models.length > 0);
      // But all off them should be same
      Key<Model> modelKey = models[0]._key;
      for (Model m : models) {
        assertTrue("Number of constructed models has to be equal to 1", modelKey == m._key);
      }
    } finally {
      if (old != null) {
        old.remove();
      }
      if (fr != null) {
        fr.remove();
      }
      if (grid != null) {
        grid.remove();
      }
    }
  }
Exemple #10
0
 // Make a new NFSFileVec key which holds the filename implicitly.
 // This name is used by the DVecs to load data on-demand.
 public static Key make(File f) {
   long size = f.length();
   Key k1 = PersistNFS.decodeFile(f);
   byte[] bits = new byte[1 + 1 + 4 + k1._kb.length];
   bits[0] = Key.VEC;
   bits[1] = 0; // Not homed
   UDP.set4(bits, 2, -1); // 0xFFFFFFFF in the chunk# area
   System.arraycopy(k1._kb, 0, bits, 1 + 1 + 4, k1._kb.length);
   Key k = Key.make(bits);
   // Insert the top-level FileVec key into the store
   DKV.put(k, new NFSFileVec(k, size));
   return k;
 }
 public static Key makeByteVec(Key k, String... data) {
   byte[][] chunks = new byte[data.length][];
   long[] espc = new long[data.length + 1];
   for (int i = 0; i < chunks.length; ++i) {
     chunks[i] = data[i].getBytes();
     espc[i + 1] = espc[i] + data[i].length();
   }
   Futures fs = new Futures();
   Key key = Vec.newKey();
   ByteVec bv = new ByteVec(key, Vec.ESPC.rowLayout(key, espc));
   for (int i = 0; i < chunks.length; ++i) {
     Key chunkKey = bv.chunkKey(i);
     DKV.put(
         chunkKey,
         new Value(chunkKey, chunks[i].length, chunks[i], TypeMap.C1NCHUNK, Value.ICE),
         fs);
   }
   DKV.put(bv._key, bv, fs);
   Frame fr = new Frame(k, new String[] {"makeByteVec"}, new Vec[] {bv});
   DKV.put(k, fr, fs);
   fs.blockForPending();
   return k;
 }
Exemple #12
0
 @Test
 public void testMerge() {
   Frame l = null, r = null, f = null;
   try {
     l = frame("name", vec(ar("Cliff", "Arno", "Tomas", "Spencer"), ari(0, 1, 2, 3)));
     l.add("age", vec(ar(">dirt", "middle", "middle", "young'n"), ari(0, 1, 2, 3)));
     l = new Frame(l);
     DKV.put(l);
     System.out.println(l);
     r = frame("name", vec(ar("Arno", "Tomas", "Michael", "Cliff"), ari(0, 1, 2, 3)));
     r.add("skill", vec(ar("science", "linearmath", "sparkling", "hacker"), ari(0, 1, 2, 3)));
     r = new Frame(r);
     DKV.put(r);
     System.out.println(r);
     String x = String.format("(merge %s %s #1 #0 )", l._key, r._key);
     Val res = Exec.exec(x);
     f = res.getFrame();
     System.out.println(f);
   } finally {
     if (f != null) f.delete();
     if (r != null) r.delete();
     if (l != null) l.delete();
   }
 }
Exemple #13
0
 public Frame(String[] names, Vec[] vecs) {
   // assert names==null || names.length == vecs.length : "Number of columns does not match to
   // number of cols' names.";
   _names = names;
   _vecs = vecs;
   _keys = new Key[vecs.length];
   for (int i = 0; i < vecs.length; i++) {
     Key k = _keys[i] = vecs[i]._key;
     if (DKV.get(k) == null) // If not already in KV, put it there
     DKV.put(k, vecs[i]);
   }
   Vec v0 = anyVec();
   if (v0 == null) return;
   VectorGroup grp = v0.group();
   for (int i = 0; i < vecs.length; i++) assert grp.equals(vecs[i].group());
 }
Exemple #14
0
    @Override
    public Job fork() {
      DKV.put(destination_key, new GLMGrid(self(), _jobs));
      assert _maxParallelism >= 1;
      final H2OCountedCompleter fjt =
          new H2OCallback<ParallelGLMs>() {
            @Override
            public void callback(ParallelGLMs pgs) {

              remove();
            }
          };
      start(fjt);
      H2O.submitTask(new ParallelGLMs(this, _jobs, H2O.CLOUD.size(), fjt));
      return this;
    }
Exemple #15
0
 @Override
 public void map(Chunk cs) {
   int idx = _chunkOffset + cs.cidx();
   Key ckey = Vec.chunkKey(_v._key, idx);
   if (_cmap != null) {
     assert !cs.hasFloat()
         : "Input chunk (" + cs.getClass() + ") has float, but is expected to be categorical";
     NewChunk nc = new NewChunk(_v, idx);
     // loop over rows and update ints for new domain mapping according to vecs[c].domain()
     for (int r = 0; r < cs._len; ++r) {
       if (cs.isNA(r)) nc.addNA();
       else nc.addNum(_cmap[(int) cs.at8(r)], 0);
     }
     nc.close(_fs);
   } else {
     DKV.put(ckey, cs.deepCopy(), _fs, true);
   }
 }
Exemple #16
0
  @Override
  Val apply(Env env, Env.StackHelp stk, AST asts[]) {
    QuantileModel.QuantileParameters parms = new QuantileModel.QuantileParameters();
    Frame fr = stk.track(asts[1].exec(env)).getFrame();
    Frame fr_wkey = new Frame(fr); // Force a bogus Key for Quantiles ModelBuilder
    DKV.put(fr_wkey);
    parms._train = fr_wkey._key;

    parms._probs = ((ASTNumList) asts[2]).expand();
    for (double d : parms._probs)
      if (d < 0 || d > 1)
        throw new IllegalArgumentException("Probability must be between 0 and 1: " + d);

    String inter = asts[3].exec(env).getStr();
    parms._combine_method = QuantileModel.CombineMethod.valueOf(inter.toUpperCase());
    parms._weights_column = asts[4].str().equals("_") ? null : asts[4].str();

    // Compute Quantiles
    QuantileModel q = new Quantile(parms).trainModel().get();

    // Remove bogus Key
    DKV.remove(fr_wkey._key);

    // Reshape all outputs as a Frame, with probs in col 0 and the
    // quantiles in cols 1 thru fr.numCols() - except the optional weights vec
    int ncols = fr.numCols();
    if (parms._weights_column != null) ncols--;
    Vec[] vecs = new Vec[1 /*1 more for the probs themselves*/ + ncols];
    String[] names = new String[vecs.length];
    vecs[0] = Vec.makeCon(null, parms._probs);
    names[0] = "Probs";
    int w = 0;
    for (int i = 0; i < vecs.length - 1; ++i) {
      if (fr._names[i].equals(parms._weights_column)) w = 1;
      assert (w == 0 || w == 1);
      vecs[i + 1] = Vec.makeCon(null, q._output._quantiles[i]);
      names[i + 1] = fr._names[w + i] + "Quantiles";
    }
    q.delete();

    return new ValFrame(new Frame(names, vecs));
  }
Exemple #17
0
 @Override
 public Job fork() {
   DKV.put(destination_key, new GLMGrid(self(), _jobs));
   assert _maxParallelism >= 1;
   final H2OCountedCompleter fjt = new H2O.H2OEmptyCompleter();
   fjt.setPendingCount(_jobs.length - 1);
   start(fjt);
   for (int i = 0; i < Math.min(_jobs.length, _maxParallelism); ++i) {
     _jobs[i].run(
         new H2OCallback(fjt) {
           @Override
           public void callback(H2OCountedCompleter t) {
             int nextJob = _idx.getAndIncrement();
             if (nextJob < _jobs.length) {
               _jobs[nextJob].run(clone());
             }
           }
         });
   }
   return this;
 }
  /**
   * TimeAveraging as part of Elastic Averaging Algorithm Cf. equation 6 of arXiv:1412.6651v5
   *
   * @param nodeAverageModel current average of per-node models
   * @return Time-average of node-averages (consensus model, "the" model)
   */
  public static DeepLearningModelInfo timeAverage(DeepLearningModelInfo nodeAverageModel) {
    float pa = (float) nodeAverageModel.get_params()._elastic_averaging_moving_rate;
    assert (pa > 0 && pa <= 1);
    DeepLearningModelInfo elasticAverage =
        DKV.getGet(nodeAverageModel.elasticAverageModelInfoKey()); // get latest version from DKV
    if (elasticAverage == null || pa == 1) {
      elasticAverage = nodeAverageModel.deep_clone();
    } else {
      nodeAverageModel.mult(pa);
      elasticAverage.mult(1 - pa);
      elasticAverage.add(nodeAverageModel); // ignore processed local value set here
      elasticAverage.set_processed_global(nodeAverageModel.get_processed_global());
    }
    elasticAverage.set_processed_local(0);
    DKV.put(elasticAverage.elasticAverageModelInfoKey(), elasticAverage);

    //    nodeAverageModel.computeStats();
    //    elasticAverage.computeStats();
    //    Log.info("Local Model    :\n" + nodeAverageModel.toString());
    //    Log.info("Elastic Average:\n" + elasticAverage.toString());
    return elasticAverage;
  }
Exemple #19
0
  @Test
  public void testCollisionOfDRFParamsChecksum() {
    Frame fr = null;
    try {
      fr = parse_test_file("smalldata/junit/cars.csv");
      fr.remove("name").remove();
      Vec old = fr.remove("economy (mpg)");
      fr.add("economy (mpg)", old); // response to last column
      DKV.put(fr);

      // {"_model_id":null,"_train":{"name":"_83da9e0754c5eb9f6b812fe17e7945e5","type":"Key"},"_valid":null,"_nfolds":0,"_keep_cross_validation_predictions":false,"_fold_assignment":"AUTO","_distribution":"AUTO","_tweedie_power":1.5,"_ignored_columns":null,"_ignore_const_cols":true,"_weights_column":null,"_offset_column":null,"_fold_column":null,"_score_each_iteration":false,"_response_column":"economy (mpg)","_balance_classes":false,"_max_after_balance_size":5.0,"_class_sampling_factors":null,"_max_hit_ratio_k":10,"_max_confusion_matrix_size":20,"_checkpoint":null,"_ntrees":9,"_max_depth":15,"_min_rows":1.0,"_nbins":20,"_nbins_cats":1024,"_r2_stopping":0.999999,"_seed":-4522296119273841674,"_nbins_top_level":1024,"_build_tree_one_node":false,"_initial_score_interval":4000,"_score_interval":4000,"_mtries":3,"_sample_rate":0.6499997,"_binomial_double_trees":false}
      DRFModel.DRFParameters params1 = new DRFModel.DRFParameters();
      params1._train = fr._key;
      params1._response_column = "economy (mpg)";
      params1._seed = -4522296119273841674L;
      params1._mtries = 3;
      params1._max_depth = 15;
      params1._ntrees = 9;
      params1._sample_rate = 0.6499997f;

      // {"_model_id":null,"_train":{"name":"_83da9e0754c5eb9f6b812fe17e7945e5","type":"Key"},"_valid":null,"_nfolds":0,"_keep_cross_validation_predictions":false,"_fold_assignment":"AUTO","_distribution":"AUTO","_tweedie_power":1.5,"_ignored_columns":null,"_ignore_const_cols":true,"_weights_column":null,"_offset_column":null,"_fold_column":null,"_score_each_iteration":false,"_response_column":"economy (mpg)","_balance_classes":false,"_max_after_balance_size":5.0,"_class_sampling_factors":null,"_max_hit_ratio_k":10,"_max_confusion_matrix_size":20,"_checkpoint":null,"_ntrees":13,"_max_depth":1,"_min_rows":1.0,"_nbins":20,"_nbins_cats":1024,"_r2_stopping":0.999999,"_seed":-4522296119273841674,"_nbins_top_level":1024,"_build_tree_one_node":false,"_initial_score_interval":4000,"_score_interval":4000,"_mtries":1,"_sample_rate":0.6499997,"_binomial_double_trees":false}
      DRFModel.DRFParameters params2 = new DRFModel.DRFParameters();
      params2._train = fr._key;
      params2._response_column = "economy (mpg)";
      params2._seed = -4522296119273841674L;
      params2._mtries = 1;
      params2._max_depth = 1;
      params2._ntrees = 13;
      params2._sample_rate = 0.6499997f;
      long csum1 = params1.checksum();
      long csum2 = params2.checksum();
      Assert.assertNotEquals("Checksums shoudl be different", csum1, csum2);
    } finally {
      if (fr != null) {
        fr.remove();
      }
    }
  }
Exemple #20
0
  // GLRM scoring is data imputation based on feature domains using reconstructed XY (see Udell
  // (2015), Section 5.3)
  private Frame reconstruct(
      Frame orig,
      Frame adaptedFr,
      Key destination_key,
      boolean save_imputed,
      boolean reverse_transform) {
    final int ncols = _output._names.length;
    assert ncols == adaptedFr.numCols();
    String prefix = "reconstr_";

    // Need [A,X,P] where A = adaptedFr, X = loading frame, P = imputed frame
    // Note: A is adapted to original training frame, P has columns shuffled so cats come before
    // nums!
    Frame fullFrm = new Frame(adaptedFr);
    Frame loadingFrm = DKV.get(_output._representation_key).get();
    fullFrm.add(loadingFrm);
    String[][] adaptedDomme = adaptedFr.domains();
    for (int i = 0; i < ncols; i++) {
      Vec v = fullFrm.anyVec().makeZero();
      v.setDomain(adaptedDomme[i]);
      fullFrm.add(prefix + _output._names[i], v);
    }
    GLRMScore gs = new GLRMScore(ncols, _parms._k, save_imputed, reverse_transform).doAll(fullFrm);

    // Return the imputed training frame
    int x = ncols + _parms._k, y = fullFrm.numCols();
    Frame f =
        fullFrm.extractFrame(
            x, y); // this will call vec_impl() and we cannot call the delete() below just yet

    f = new Frame((null == destination_key ? Key.make() : destination_key), f.names(), f.vecs());
    DKV.put(f);
    gs._mb.makeModelMetrics(
        GLRMModel.this, orig, null, null); // save error metrics based on imputed data
    return f;
  }
Exemple #21
0
  @Test
  public void testCarsGrid() {
    Grid<GBMModel.GBMParameters> grid = null;
    Frame fr = null;
    Vec old = null;
    try {
      fr = parse_test_file("smalldata/junit/cars.csv");
      fr.remove("name").remove(); // Remove unique id
      old = fr.remove("cylinders");
      fr.add("cylinders", old.toCategoricalVec()); // response to last column
      DKV.put(fr);

      // Setup hyperparameter search space
      final Double[] legalLearnRateOpts = new Double[] {0.01, 0.1, 0.3};
      final Double[] illegalLearnRateOpts = new Double[] {-1.0};
      HashMap<String, Object[]> hyperParms =
          new HashMap<String, Object[]>() {
            {
              put("_ntrees", new Integer[] {1, 2});
              put("_distribution", new DistributionFamily[] {DistributionFamily.multinomial});
              put("_max_depth", new Integer[] {1, 2, 5});
              put("_learn_rate", ArrayUtils.join(legalLearnRateOpts, illegalLearnRateOpts));
            }
          };

      // Name of used hyper parameters
      String[] hyperParamNames = hyperParms.keySet().toArray(new String[hyperParms.size()]);
      Arrays.sort(hyperParamNames);
      int hyperSpaceSize = ArrayUtils.crossProductSize(hyperParms);

      // Fire off a grid search
      GBMModel.GBMParameters params = new GBMModel.GBMParameters();
      params._train = fr._key;
      params._response_column = "cylinders";
      // Get the Grid for this modeling class and frame
      Job<Grid> gs = GridSearch.startGridSearch(null, params, hyperParms);
      grid = (Grid<GBMModel.GBMParameters>) gs.get();
      // Make sure number of produced models match size of specified hyper space
      Assert.assertEquals(
          "Size of grid (models+failures) should match to size of hyper space",
          hyperSpaceSize,
          grid.getModelCount() + grid.getFailureCount());
      //
      // Make sure that names of used parameters match
      //
      String[] gridHyperNames = grid.getHyperNames();
      Arrays.sort(gridHyperNames);
      Assert.assertArrayEquals(
          "Hyper parameters names should match!", hyperParamNames, gridHyperNames);

      //
      // Make sure that values of used parameters match as well to the specified values
      //
      Key<Model>[] mKeys = grid.getModelKeys();
      Map<String, Set<Object>> usedHyperParams = GridTestUtils.initMap(hyperParamNames);
      for (Key<Model> mKey : mKeys) {
        GBMModel gbm = (GBMModel) mKey.get();
        System.out.println(
            gbm._output._scored_train[gbm._output._ntrees]._mse
                + " "
                + Arrays.deepToString(
                    ArrayUtils.zip(grid.getHyperNames(), grid.getHyperValues(gbm._parms))));
        GridTestUtils.extractParams(usedHyperParams, gbm._parms, hyperParamNames);
      }
      // Remove illegal options
      hyperParms.put("_learn_rate", legalLearnRateOpts);
      GridTestUtils.assertParamsEqual(
          "Grid models parameters have to cover specified hyper space",
          hyperParms,
          usedHyperParams);

      // Verify model failure
      Map<String, Set<Object>> failedHyperParams = GridTestUtils.initMap(hyperParamNames);
      ;
      for (Model.Parameters failedParams : grid.getFailedParameters()) {
        GridTestUtils.extractParams(failedHyperParams, failedParams, hyperParamNames);
      }
      hyperParms.put("_learn_rate", illegalLearnRateOpts);
      GridTestUtils.assertParamsEqual(
          "Failed model parameters have to correspond to specified hyper space",
          hyperParms,
          failedHyperParams);

    } finally {
      if (old != null) {
        old.remove();
      }
      if (fr != null) {
        fr.remove();
      }
      if (grid != null) {
        grid.remove();
      }
    }
  }
Exemple #22
0
  // @Ignore("PUBDEV-1648")
  @Test
  public void testRandomCarsGrid() {
    Grid grid = null;
    GBMModel gbmRebuilt = null;
    Frame fr = null;
    Vec old = null;
    try {
      fr = parse_test_file("smalldata/junit/cars.csv");
      fr.remove("name").remove();
      old = fr.remove("economy (mpg)");

      fr.add("economy (mpg)", old); // response to last column
      DKV.put(fr);

      // Setup random hyperparameter search space
      HashMap<String, Object[]> hyperParms = new HashMap<>();
      hyperParms.put("_distribution", new DistributionFamily[] {DistributionFamily.gaussian});

      // Construct random grid search space
      Random rng = new Random();

      Integer ntreesDim = rng.nextInt(4) + 1;
      Integer maxDepthDim = rng.nextInt(4) + 1;
      Integer learnRateDim = rng.nextInt(4) + 1;

      Integer[] ntreesArr = interval(1, 25);
      ArrayList<Integer> ntreesList = new ArrayList<>(Arrays.asList(ntreesArr));
      Collections.shuffle(ntreesList);
      Integer[] ntreesSpace = new Integer[ntreesDim];
      for (int i = 0; i < ntreesDim; i++) {
        ntreesSpace[i] = ntreesList.get(i);
      }

      Integer[] maxDepthArr = interval(1, 10);
      ArrayList<Integer> maxDepthList = new ArrayList<>(Arrays.asList(maxDepthArr));
      Collections.shuffle(maxDepthList);
      Integer[] maxDepthSpace = new Integer[maxDepthDim];
      for (int i = 0; i < maxDepthDim; i++) {
        maxDepthSpace[i] = maxDepthList.get(i);
      }

      Double[] learnRateArr = interval(0.01, 1.0, 0.01);
      ArrayList<Double> learnRateList = new ArrayList<>(Arrays.asList(learnRateArr));
      Collections.shuffle(learnRateList);
      Double[] learnRateSpace = new Double[learnRateDim];
      for (int i = 0; i < learnRateDim; i++) {
        learnRateSpace[i] = learnRateList.get(i);
      }

      hyperParms.put("_ntrees", ntreesSpace);
      hyperParms.put("_max_depth", maxDepthSpace);
      hyperParms.put("_learn_rate", learnRateSpace);

      // Fire off a grid search
      GBMModel.GBMParameters params = new GBMModel.GBMParameters();
      params._train = fr._key;
      params._response_column = "economy (mpg)";
      // Get the Grid for this modeling class and frame
      Job<Grid> gs = GridSearch.startGridSearch(null, params, hyperParms);
      grid = gs.get();

      System.out.println("ntrees search space: " + Arrays.toString(ntreesSpace));
      System.out.println("max_depth search space: " + Arrays.toString(maxDepthSpace));
      System.out.println("learn_rate search space: " + Arrays.toString(learnRateSpace));

      // Check that cardinality of grid
      Model[] ms = grid.getModels();
      Integer numModels = ms.length;
      System.out.println("Grid consists of " + numModels + " models");
      assertTrue(numModels == ntreesDim * maxDepthDim * learnRateDim);

      // Pick a random model from the grid
      HashMap<String, Object[]> randomHyperParms = new HashMap<>();
      randomHyperParms.put("_distribution", new DistributionFamily[] {DistributionFamily.gaussian});

      Integer ntreeVal = ntreesSpace[rng.nextInt(ntreesSpace.length)];
      randomHyperParms.put("_ntrees", new Integer[] {ntreeVal});

      Integer maxDepthVal = maxDepthSpace[rng.nextInt(maxDepthSpace.length)];
      randomHyperParms.put("_max_depth", maxDepthSpace);

      Double learnRateVal = learnRateSpace[rng.nextInt(learnRateSpace.length)];
      randomHyperParms.put("_learn_rate", learnRateSpace);

      // TODO: GBMModel gbmFromGrid = (GBMModel) g2.model(randomHyperParms).get();

      // Rebuild it with it's parameters
      params._distribution = DistributionFamily.gaussian;
      params._ntrees = ntreeVal;
      params._max_depth = maxDepthVal;
      params._learn_rate = learnRateVal;
      GBM gbm = new GBM(params);
      gbmRebuilt = gbm.trainModel().get();
      assertTrue(gbm.isStopped());

      // Make sure the MSE metrics match
      // double fromGridMSE = gbmFromGrid._output._scored_train[gbmFromGrid._output._ntrees]._mse;
      double rebuiltMSE = gbmRebuilt._output._scored_train[gbmRebuilt._output._ntrees]._mse;
      // System.out.println("The random grid model's MSE: " + fromGridMSE);
      System.out.println("The rebuilt model's MSE: " + rebuiltMSE);
      // assertEquals(fromGridMSE, rebuiltMSE);

    } finally {
      if (old != null) old.remove();
      if (fr != null) fr.remove();
      if (grid != null) grid.remove();
      if (gbmRebuilt != null) gbmRebuilt.remove();
    }
  }
Exemple #23
0
  // @Ignore("PUBDEV-1648")
  @Test
  public void testRandomCarsGrid() {
    Grid grid = null;
    DRFModel drfRebuilt = null;
    Frame fr = null;
    try {
      fr = parse_test_file("smalldata/junit/cars.csv");
      fr.remove("name").remove();
      Vec old = fr.remove("economy (mpg)");
      fr.add("economy (mpg)", old); // response to last column
      DKV.put(fr);

      // Setup random hyperparameter search space
      HashMap<String, Object[]> hyperParms = new HashMap<>();

      // Construct random grid search space
      long seed = System.nanoTime();
      Random rng = new Random(seed);

      // Limit to 1-3 randomly, 4 times.  Average total number of models is
      // 2^4, or 16.  Max is 81 models.
      Integer ntreesDim = rng.nextInt(3) + 1;
      Integer maxDepthDim = rng.nextInt(3) + 1;
      Integer mtriesDim = rng.nextInt(3) + 1;
      Integer sampleRateDim = rng.nextInt(3) + 1;

      Integer[] ntreesArr = interval(1, 15);
      ArrayList<Integer> ntreesList = new ArrayList<>(Arrays.asList(ntreesArr));
      Collections.shuffle(ntreesList);
      Integer[] ntreesSpace = new Integer[ntreesDim];
      for (int i = 0; i < ntreesDim; i++) {
        ntreesSpace[i] = ntreesList.get(i);
      }

      Integer[] maxDepthArr = interval(1, 10);
      ArrayList<Integer> maxDepthList = new ArrayList<>(Arrays.asList(maxDepthArr));
      Collections.shuffle(maxDepthList);
      Integer[] maxDepthSpace = new Integer[maxDepthDim];
      for (int i = 0; i < maxDepthDim; i++) {
        maxDepthSpace[i] = maxDepthList.get(i);
      }

      Integer[] mtriesArr = interval(1, 5);
      ArrayList<Integer> mtriesList = new ArrayList<>(Arrays.asList(mtriesArr));
      Collections.shuffle(mtriesList);
      Integer[] mtriesSpace = new Integer[mtriesDim];
      for (int i = 0; i < mtriesDim; i++) {
        mtriesSpace[i] = mtriesList.get(i);
      }

      Double[] sampleRateArr = interval(0.01, 0.99, 0.01);
      ArrayList<Double> sampleRateList = new ArrayList<>(Arrays.asList(sampleRateArr));
      Collections.shuffle(sampleRateList);
      Double[] sampleRateSpace = new Double[sampleRateDim];
      for (int i = 0; i < sampleRateDim; i++) {
        sampleRateSpace[i] = sampleRateList.get(i);
      }

      hyperParms.put("_ntrees", ntreesSpace);
      hyperParms.put("_max_depth", maxDepthSpace);
      hyperParms.put("_mtries", mtriesSpace);
      hyperParms.put("_sample_rate", sampleRateSpace);

      // Fire off a grid search
      DRFModel.DRFParameters params = new DRFModel.DRFParameters();
      params._train = fr._key;
      params._response_column = "economy (mpg)";
      // Get the Grid for this modeling class and frame
      Job<Grid> gs = GridSearch.startGridSearch(null, params, hyperParms);
      grid = gs.get();

      System.out.println("Test seed: " + seed);
      System.out.println("ntrees search space: " + Arrays.toString(ntreesSpace));
      System.out.println("max_depth search space: " + Arrays.toString(maxDepthSpace));
      System.out.println("mtries search space: " + Arrays.toString(mtriesSpace));
      System.out.println("sample_rate search space: " + Arrays.toString(sampleRateSpace));

      // Check that cardinality of grid
      Model[] ms = grid.getModels();
      int numModels = ms.length;
      System.out.println("Grid consists of " + numModels + " models");
      assertEquals(
          "Number of models should match hyper space size",
          numModels,
          ntreesDim * maxDepthDim * sampleRateDim * mtriesDim + grid.getFailureCount());

      // Pick a random model from the grid
      HashMap<String, Object[]> randomHyperParms = new HashMap<>();

      Integer ntreeVal = ntreesSpace[rng.nextInt(ntreesSpace.length)];
      randomHyperParms.put("_ntrees", new Integer[] {ntreeVal});

      Integer maxDepthVal = maxDepthSpace[rng.nextInt(maxDepthSpace.length)];
      randomHyperParms.put("_max_depth", maxDepthSpace);

      Integer mtriesVal = mtriesSpace[rng.nextInt(mtriesSpace.length)];
      randomHyperParms.put("_max_depth", mtriesSpace);

      Double sampleRateVal = sampleRateSpace[rng.nextInt(sampleRateSpace.length)];
      randomHyperParms.put("_sample_rate", sampleRateSpace);

      // TODO: DRFModel drfFromGrid = (DRFModel) g2.model(randomHyperParms).get();

      // Rebuild it with it's parameters
      params._ntrees = ntreeVal;
      params._max_depth = maxDepthVal;
      params._mtries = mtriesVal;
      drfRebuilt = new DRF(params).trainModel().get();

      // Make sure the MSE metrics match
      // double fromGridMSE = drfFromGrid._output._scored_train[drfFromGrid._output._ntrees]._mse;
      double rebuiltMSE = drfRebuilt._output._scored_train[drfRebuilt._output._ntrees]._mse;
      // System.out.println("The random grid model's MSE: " + fromGridMSE);
      System.out.println("The rebuilt model's MSE: " + rebuiltMSE);
      // assertEquals(fromGridMSE, rebuiltMSE);

    } finally {
      if (fr != null) {
        fr.remove();
      }
      if (grid != null) {
        grid.remove();
      }
      if (drfRebuilt != null) {
        drfRebuilt.remove();
      }
    }
  }
  @Test
  public void testSetColumnLossCats() throws InterruptedException, ExecutionException {
    GLRM job = null;
    GLRMModel model = null;
    Frame train = null;
    final int[] cats = new int[] {1, 3, 4, 5}; // Categoricals: CAPSULE, RACE, DPROS, DCAPS

    Scope.enter();
    try {
      train = parse_test_file(Key.make("prostate.hex"), "smalldata/logreg/prostate.csv");
      for (int i = 0; i < cats.length; i++)
        Scope.track(train.replace(cats[i], train.vec(cats[i]).toCategoricalVec())._key);
      train.remove("ID").remove();
      DKV.put(train._key, train);

      GLRMParameters parms = new GLRMParameters();
      parms._train = train._key;
      parms._k = 12;
      parms._loss = GLRMParameters.Loss.Quadratic;
      parms._multi_loss = GLRMParameters.Loss.Categorical;
      parms._loss_by_col =
          new GLRMParameters.Loss[] {
            GLRMParameters.Loss.Ordinal, GLRMParameters.Loss.Poisson, GLRMParameters.Loss.Absolute
          };
      parms._loss_by_col_idx = new int[] {3 /* DPROS */, 1 /* AGE */, 6 /* VOL */};
      parms._init = GLRM.Initialization.PlusPlus;
      parms._min_step_size = 1e-5;
      parms._recover_svd = false;
      parms._max_iterations = 2000;

      try {
        job = new GLRM(parms);
        model = job.trainModel().get();
        Log.info(
            "Iteration "
                + model._output._iterations
                + ": Objective value = "
                + model._output._objective);
        GLRMTest.checkLossbyCol(parms, model);

        model.score(train).delete();
        ModelMetricsGLRM mm = (ModelMetricsGLRM) ModelMetrics.getFromDKV(model, train);
        Log.info(
            "Numeric Sum of Squared Error = "
                + mm._numerr
                + "\tCategorical Misclassification Error = "
                + mm._caterr);
      } catch (Throwable t) {
        t.printStackTrace();
        throw new RuntimeException(t);
      } finally {
        job.remove();
      }

    } catch (Throwable t) {
      t.printStackTrace();
      throw new RuntimeException(t);
    } finally {
      if (train != null) train.delete();
      if (model != null) model.delete();
      Scope.exit();
    }
  }
Exemple #25
0
  public static Frame[] shuffleSplitFrame(
      Frame fr, Key[] keys, final double ratios[], final long seed) {
    // Sanity check the ratios
    assert keys.length == ratios.length;
    double sum = ratios[0];
    for (int i = 1; i < ratios.length; i++) {
      sum += ratios[i];
      ratios[i] = sum;
    }
    assert water.util.MathUtils.equalsWithinOneSmallUlp(sum, 1.0);

    // Do the split, into ratios.length groupings of NewChunks
    final int ncols = fr.numCols();
    MRTask mr =
        new MRTask() {
          @Override
          public void map(Chunk cs[], NewChunk ncs[]) {
            Random rng = new Random(seed * cs[0].cidx());
            int nrows = cs[0]._len;
            for (int i = 0; i < nrows; i++) {
              double r = rng.nextDouble();
              int x = 0; // Pick the NewChunk split
              for (; x < ratios.length - 1; x++) if (r < ratios[x]) break;
              x *= ncols;
              // Helper string holder
              ValueString vstr = new ValueString();
              // Copy row to correct set of NewChunks
              for (int j = 0; j < ncols; j++) {
                byte colType = cs[j].vec().get_type();
                switch (colType) {
                  case Vec.T_BAD:
                    break; /* NOP */
                  case Vec.T_STR:
                    ncs[x + j].addStr(cs[j], i);
                    break;
                  case Vec.T_UUID:
                    ncs[x + j].addUUID(cs[j], i);
                    break;
                  case Vec.T_NUM: /* fallthrough */
                  case Vec.T_ENUM:
                  case Vec.T_TIME:
                    ncs[x + j].addNum(cs[j].atd(i));
                    break;
                  default:
                    if (colType > Vec.T_TIME && colType <= Vec.T_TIMELAST)
                      ncs[x + j].addNum(cs[j].atd(i));
                    else throw new IllegalArgumentException("Unsupported vector type: " + colType);
                    break;
                }
              }
            }
          }
        }.doAll(ncols * ratios.length, fr);

    // Build output frames
    Frame frames[] = new Frame[ratios.length];
    Vec[] vecs = fr.vecs();
    String[] names = fr.names();
    Futures fs = new Futures();
    for (int i = 0; i < ratios.length; i++) {
      Vec[] nvecs = new Vec[ncols];
      for (int c = 0; c < ncols; c++) {
        mr.appendables()[i * ncols + c].setDomain(vecs[c].domain());
        nvecs[c] = mr.appendables()[i * ncols + c].close(fs);
      }
      frames[i] = new Frame(keys[i], fr.names(), nvecs);
      DKV.put(frames[i], fs);
    }
    fs.blockForPending();
    return frames;
  }
  @Test
  public void testExpandCatsProstate() throws InterruptedException, ExecutionException {
    double[][] prostate =
        ard(
            ard(0, 71, 1, 0, 0, 4.8, 14.0, 7),
            ard(1, 70, 1, 1, 0, 8.4, 21.8, 5),
            ard(0, 73, 1, 3, 0, 10.0, 27.4, 6),
            ard(1, 68, 1, 0, 0, 6.7, 16.7, 6));
    double[][] pros_expandR =
        ard(
            ard(1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 71, 4.8, 14.0, 7),
            ard(0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 70, 8.4, 21.8, 5),
            ard(0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 73, 10.0, 27.4, 6),
            ard(1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 68, 6.7, 16.7, 6));
    String[] pros_cols =
        new String[] {"Capsule", "Age", "Race", "Dpros", "Dcaps", "PSA", "Vol", "Gleason"};
    String[][] pros_domains =
        new String[][] {
          new String[] {"No", "Yes"},
          null,
          new String[] {"Other", "White", "Black"},
          new String[] {"None", "UniLeft", "UniRight", "Bilobar"},
          new String[] {"No", "Yes"},
          null,
          null,
          null
        };
    final int[] cats = new int[] {1, 3, 4, 5}; // Categoricals: CAPSULE, RACE, DPROS, DCAPS

    Frame fr = null;
    try {
      Scope.enter();
      fr = parse_test_file(Key.make("prostate.hex"), "smalldata/logreg/prostate.csv");
      for (int i = 0; i < cats.length; i++)
        Scope.track(fr.replace(cats[i], fr.vec(cats[i]).toCategoricalVec())._key);
      fr.remove("ID").remove();
      DKV.put(fr._key, fr);
      DataInfo dinfo =
          new DataInfo(
              Key.make(),
              fr,
              null,
              0,
              true,
              DataInfo.TransformType.NONE,
              DataInfo.TransformType.NONE,
              false,
              false,
              false, /* weights */
              false, /* offset */
              false, /* fold */
              false);

      Log.info("Original matrix:\n" + colFormat(pros_cols, "%8.7s") + ArrayUtils.pprint(prostate));
      double[][] pros_perm = ArrayUtils.permuteCols(prostate, dinfo._permutation);
      Log.info(
          "Permuted matrix:\n"
              + colFormat(pros_cols, "%8.7s", dinfo._permutation)
              + ArrayUtils.pprint(pros_perm));

      double[][] pros_exp = GLRM.expandCats(pros_perm, dinfo);
      Log.info(
          "Expanded matrix:\n"
              + colExpFormat(pros_cols, pros_domains, "%8.7s", dinfo._permutation)
              + ArrayUtils.pprint(pros_exp));
      Assert.assertArrayEquals(pros_expandR, pros_exp);
    } catch (Throwable t) {
      t.printStackTrace();
      throw new RuntimeException(t);
    } finally {
      if (fr != null) fr.delete();
      Scope.exit();
    }
  }
  /**
   * This method trains a stacked autoencoder
   *
   * @param trainData Training dataset as a JavaRDD
   * @param batchSize Size of a training mini-batch
   * @param layerSizes Number of neurons for each layer
   * @param epochs Number of epochs to train
   * @param responseColumn Name of the response column
   * @param modelName Name of the model
   * @return DeepLearningModel
   */
  public DeepLearningModel train(
      JavaRDD<LabeledPoint> trainData,
      int batchSize,
      int[] layerSizes,
      String activationType,
      int epochs,
      String responseColumn,
      String modelName,
      MLModel mlModel,
      long modelID) {
    // build stacked autoencoder by training the model with training data

    double trainingFraction = 1;
    try {
      Scope.enter();
      if (trainData != null) {

        int numberOfFeatures = mlModel.getFeatures().size();
        List<Feature> features = mlModel.getFeatures();
        String[] names = new String[numberOfFeatures + 1];
        for (int i = 0; i < numberOfFeatures; i++) {
          names[i] = features.get(i).getName();
        }
        names[numberOfFeatures] = mlModel.getResponseVariable();

        Frame frame = DeeplearningModelUtils.javaRDDToFrame(names, trainData);

        // H2O uses default C<x> for column header
        // String classifColName = "C" + frame.numCols();
        String classifColName = mlModel.getResponseVariable();

        // Convert response to categorical (digits 1 to <num of columns>)
        int ci = frame.find(classifColName);
        Scope.track(frame.replace(ci, frame.vecs()[ci].toEnum())._key);

        // Splitting train file to train, validation and test
        // Using FrameSplitter (instead of SuffleSplitFrame) gives a weird exception
        // barrier onExCompletion for hex.deeplearning.DeepLearning$DeepLearningDriver@78ec854
        double[] ratios = new double[] {trainingFraction, 1 - trainingFraction};
        @SuppressWarnings("unchecked")
        Frame[] splits =
            ShuffleSplitFrame.shuffleSplitFrame(
                frame, generateNumKeys(frame._key, ratios.length), ratios, 123456789);

        Frame trainFrame = splits[0];
        Frame vframe = splits[1];

        if (log.isDebugEnabled()) {
          log.debug("Creating Deeplearning parameters");
        }

        DeepLearningParameters deeplearningParameters = new DeepLearningParameters();

        // convert model name
        String dlModelName = modelName.replace('.', '_').replace('-', '_');

        // populate model parameters
        deeplearningParameters._model_id = Key.make(dlModelName + "_dl");
        deeplearningParameters._train = trainFrame._key;
        deeplearningParameters._valid = vframe._key;
        deeplearningParameters._response_column = classifColName; // last column is the response
        // This is causin all the predictions to be 0.0
        // p._autoencoder = true;
        deeplearningParameters._activation = getActivationType(activationType);
        deeplearningParameters._hidden = layerSizes;
        deeplearningParameters._train_samples_per_iteration = batchSize;
        deeplearningParameters._input_dropout_ratio = 0.2;
        deeplearningParameters._l1 = 1e-5;
        deeplearningParameters._max_w2 = 10;
        deeplearningParameters._epochs = epochs;

        // speed up training
        deeplearningParameters._adaptive_rate =
            true; // disable adaptive per-weight learning rate -> default
        // settings for learning rate and momentum are probably
        // not ideal (slow convergence)
        deeplearningParameters._replicate_training_data =
            true; // avoid extra communication cost upfront, got
        // enough data on each node for load balancing
        deeplearningParameters._overwrite_with_best_model =
            true; // no need to keep the best model around
        deeplearningParameters._diagnostics =
            false; // no need to compute statistics during training
        deeplearningParameters._classification_stop = -1;
        deeplearningParameters._score_interval =
            60; // score and print progress report (only) every 20 seconds
        deeplearningParameters._score_training_samples =
            batchSize / 10; // only score on a small sample of the
        // training set -> don't want to spend
        // too much time scoring (note: there
        // will be at least 1 row per chunk)

        DKV.put(trainFrame);
        DKV.put(vframe);

        deeplearning = new DeepLearning(deeplearningParameters);

        if (log.isDebugEnabled()) {
          log.debug("Start training deeplearning model ....");
        }

        try {
          dlModel = deeplearning.trainModel().get();
          if (log.isDebugEnabled()) {
            log.debug("Successfully finished Training deeplearning model.");
          }

        } catch (RuntimeException ex) {
          log.error("Error in training Stacked Autoencoder classifier model", ex);
        }
      } else {
        log.error("Train file not found!");
      }
    } catch (RuntimeException ex) {
      log.error("Failed to train the deeplearning model [id] " + modelID + ". " + ex.getMessage());
    } finally {
      Scope.exit();
    }

    return dlModel;
  }
Exemple #28
0
    /**
     * Train a Deep Learning model, assumes that all members are populated If checkpoint == null,
     * then start training a new model, otherwise continue from a checkpoint
     */
    public final void buildModel() {
      DeepLearningModel cp = null;
      if (_parms._checkpoint == null) {
        cp =
            new DeepLearningModel(
                dest(),
                _parms,
                new DeepLearningModel.DeepLearningModelOutput(DeepLearning.this),
                _train,
                _valid,
                nclasses());
        cp.model_info().initializeMembers();
      } else {
        final DeepLearningModel previous = DKV.getGet(_parms._checkpoint);
        if (previous == null) throw new IllegalArgumentException("Checkpoint not found.");
        Log.info("Resuming from checkpoint.");
        _job.update(0, "Resuming from checkpoint");

        if (isClassifier() != previous._output.isClassifier())
          throw new H2OIllegalArgumentException(
              "Response type must be the same as for the checkpointed model.");
        if (isSupervised() != previous._output.isSupervised())
          throw new H2OIllegalArgumentException(
              "Model type must be the same as for the checkpointed model.");

        // check the user-given arguments for consistency
        DeepLearningParameters oldP =
            previous._parms; // sanitized parameters for checkpointed model
        DeepLearningParameters newP = _parms; // user-given parameters for restart

        DeepLearningParameters oldP2 = (DeepLearningParameters) oldP.clone();
        DeepLearningParameters newP2 = (DeepLearningParameters) newP.clone();
        DeepLearningParameters.Sanity.modifyParms(
            oldP, oldP2, nclasses()); // sanitize the user-given parameters
        DeepLearningParameters.Sanity.modifyParms(
            newP, newP2, nclasses()); // sanitize the user-given parameters
        DeepLearningParameters.Sanity.checkpoint(oldP2, newP2);

        DataInfo dinfo;
        try {
          // PUBDEV-2513: Adapt _train and _valid (in-place) to match the frames that were used for
          // the previous model
          // This can add or remove dummy columns (can happen if the dataset is sparse and datasets
          // have different non-const columns)
          for (String st : previous.adaptTestForTrain(_train, true, false)) Log.warn(st);
          for (String st : previous.adaptTestForTrain(_valid, true, false)) Log.warn(st);
          dinfo = makeDataInfo(_train, _valid, _parms, nclasses());
          DKV.put(dinfo);
          cp = new DeepLearningModel(dest(), _parms, previous, false, dinfo);
          cp.write_lock(_job);

          if (!Arrays.equals(cp._output._names, previous._output._names)) {
            throw new H2OIllegalArgumentException(
                "The columns of the training data must be the same as for the checkpointed model. Check ignored columns (or disable ignore_const_cols).");
          }
          if (!Arrays.deepEquals(cp._output._domains, previous._output._domains)) {
            throw new H2OIllegalArgumentException(
                "Categorical factor levels of the training data must be the same as for the checkpointed model.");
          }
          if (dinfo.fullN() != previous.model_info().data_info().fullN()) {
            throw new H2OIllegalArgumentException(
                "Total number of predictors is different than for the checkpointed model.");
          }
          if (_parms._epochs <= previous.epoch_counter) {
            throw new H2OIllegalArgumentException(
                "Total number of epochs must be larger than the number of epochs already trained for the checkpointed model ("
                    + previous.epoch_counter
                    + ").");
          }

          // these are the mutable parameters that are to be used by the model (stored in
          // model_info._parms)
          final DeepLearningParameters actualNewP =
              cp.model_info()
                  .get_params(); // actually used parameters for model building (defaults filled in,
                                 // etc.)
          assert (actualNewP != previous.model_info().get_params());
          assert (actualNewP != newP);
          assert (actualNewP != oldP);
          DeepLearningParameters.Sanity.update(actualNewP, newP, nclasses());

          Log.info(
              "Continuing training after "
                  + String.format("%.3f", previous.epoch_counter)
                  + " epochs from the checkpointed model.");
          cp.update(_job);
        } catch (H2OIllegalArgumentException ex) {
          if (cp != null) {
            cp.unlock(_job);
            cp.delete();
            cp = null;
          }
          throw ex;
        } finally {
          if (cp != null) cp.unlock(_job);
        }
      }
      trainModel(cp);

      // clean up, but don't delete weights and biases if user asked for export
      List<Key> keep = new ArrayList<>();
      try {
        if (_parms._export_weights_and_biases
            && cp._output.weights != null
            && cp._output.biases != null) {
          for (Key k : Arrays.asList(cp._output.weights)) {
            keep.add(k);
            for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) {
              keep.add(vk._key);
            }
          }
          for (Key k : Arrays.asList(cp._output.biases)) {
            keep.add(k);
            for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) {
              keep.add(vk._key);
            }
          }
        }
      } finally {
        Scope.exit(keep.toArray(new Key[keep.size()]));
      }
    }
Exemple #29
0
 @Override
 public void onCompletion(CountedCompleter cc) {
   DKV.put(_v);
 }
Exemple #30
0
 private static Frame register(Frame f) {
   if (f._key != null) DKV.put(f._key, f);
   allFrames.add(f);
   return f;
 }