/** * Train a Deep Learning neural net model * * @param model Input model (e.g., from initModel(), or from a previous training run) * @return Trained model */ public final DeepLearningModel trainModel(DeepLearningModel model) { Frame validScoreFrame = null; Frame train, trainScoreFrame; try { // if (checkpoint == null && !quiet_mode) logStart(); //if checkpoint is given, some // Job's params might be uninitialized (but the restarted model's parameters are correct) if (model == null) { model = DKV.get(dest()).get(); } Log.info( "Model category: " + (_parms._autoencoder ? "Auto-Encoder" : isClassifier() ? "Classification" : "Regression")); final long model_size = model.model_info().size(); Log.info( "Number of model parameters (weights/biases): " + String.format("%,d", model_size)); model.write_lock(_job); _job.update(0, "Setting up training data..."); final DeepLearningParameters mp = model.model_info().get_params(); // temporary frames of the same "name" as the orig _train/_valid (asking the parameter's // Key, not the actual frame) // Note: don't put into DKV or they would overwrite the _train/_valid frames! Frame tra_fr = new Frame(mp._train, _train.names(), _train.vecs()); Frame val_fr = _valid != null ? new Frame(mp._valid, _valid.names(), _valid.vecs()) : null; train = tra_fr; if (model._output.isClassifier() && mp._balance_classes) { _job.update(0, "Balancing class distribution of training data..."); float[] trainSamplingFactors = new float [train .lastVec() .domain() .length]; // leave initialized to 0 -> will be filled up below if (mp._class_sampling_factors != null) { if (mp._class_sampling_factors.length != train.lastVec().domain().length) throw new IllegalArgumentException( "class_sampling_factors must have " + train.lastVec().domain().length + " elements"); trainSamplingFactors = mp._class_sampling_factors.clone(); // clone: don't modify the original } train = sampleFrameStratified( train, train.lastVec(), train.vec(model._output.weightsName()), trainSamplingFactors, (long) (mp._max_after_balance_size * train.numRows()), mp._seed, true, false); Vec l = train.lastVec(); Vec w = train.vec(model._output.weightsName()); MRUtils.ClassDist cd = new MRUtils.ClassDist(l); model._output._modelClassDist = _weights != null ? cd.doAll(l, w).rel_dist() : cd.doAll(l).rel_dist(); } model.training_rows = train.numRows(); if (_weights != null && _weights.min() == 0 && _weights.max() == 1 && _weights.isInt()) { model.training_rows = Math.round(train.numRows() * _weights.mean()); Log.warn( "Not counting " + (train.numRows() - model.training_rows) + " rows with weight=0 towards an epoch."); } Log.info("One epoch corresponds to " + model.training_rows + " training data rows."); trainScoreFrame = sampleFrame( train, mp._score_training_samples, mp._seed); // training scoring dataset is always sampled uniformly from the training // dataset if (trainScoreFrame != train) Scope.track(trainScoreFrame); if (!_parms._quiet_mode) Log.info("Number of chunks of the training data: " + train.anyVec().nChunks()); if (val_fr != null) { model.validation_rows = val_fr.numRows(); // validation scoring dataset can be sampled in multiple ways from the given validation // dataset if (model._output.isClassifier() && mp._balance_classes && mp._score_validation_sampling == DeepLearningParameters.ClassSamplingMethod.Stratified) { _job.update(0, "Sampling validation data (stratified)..."); validScoreFrame = sampleFrameStratified( val_fr, val_fr.lastVec(), val_fr.vec(model._output.weightsName()), null, mp._score_validation_samples > 0 ? mp._score_validation_samples : val_fr.numRows(), mp._seed + 1, false /* no oversampling */, false); } else { _job.update(0, "Sampling validation data..."); validScoreFrame = sampleFrame(val_fr, mp._score_validation_samples, mp._seed + 1); if (validScoreFrame != val_fr) Scope.track(validScoreFrame); } if (!_parms._quiet_mode) Log.info( "Number of chunks of the validation data: " + validScoreFrame.anyVec().nChunks()); } // Set train_samples_per_iteration size (cannot be done earlier since this depends on // whether stratified sampling is done) model.actual_train_samples_per_iteration = computeTrainSamplesPerIteration(mp, model.training_rows, model); // Determine whether shuffling is enforced if (mp._replicate_training_data && (model.actual_train_samples_per_iteration == model.training_rows * (mp._single_node_mode ? 1 : H2O.CLOUD.size())) && !mp._shuffle_training_data && H2O.CLOUD.size() > 1 && !mp._reproducible) { if (!mp._quiet_mode) Log.info( "Enabling training data shuffling, because all nodes train on the full dataset (replicated training data)."); mp._shuffle_training_data = true; } if (!mp._shuffle_training_data && model.actual_train_samples_per_iteration == model.training_rows && train.anyVec().nChunks() == 1) { if (!mp._quiet_mode) Log.info( "Enabling training data shuffling to avoid training rows in the same order over and over (no Hogwild since there's only 1 chunk)."); mp._shuffle_training_data = true; } // if (!mp._quiet_mode) Log.info("Initial model:\n" + model.model_info()); long now = System.currentTimeMillis(); model._timeLastIterationEnter = now; if (_parms._autoencoder) { _job.update(0, "Scoring null model of autoencoder..."); if (!mp._quiet_mode) Log.info("Scoring the null model of the autoencoder."); model.doScoring( trainScoreFrame, validScoreFrame, _job._key, 0, false); // get the null model reconstruction error } // put the initial version of the model into DKV model.update(_job); model.total_setup_time_ms += now - _job.start_time(); Log.info("Total setup time: " + PrettyPrint.msecs(model.total_setup_time_ms, true)); Log.info("Starting to train the Deep Learning model."); _job.update(0, "Training..."); // main loop for (; ; ) { model.iterations++; model.set_model_info( mp._epochs == 0 ? model.model_info() : H2O.CLOUD.size() > 1 && mp._replicate_training_data ? (mp._single_node_mode ? new DeepLearningTask2( _job._key, train, model.model_info(), rowFraction(train, mp, model), model.iterations) .doAll(Key.make(H2O.SELF)) .model_info() : // replicated data + single node mode new DeepLearningTask2( _job._key, train, model.model_info(), rowFraction(train, mp, model), model.iterations) .doAllNodes() .model_info()) : // replicated data + multi-node mode new DeepLearningTask( _job._key, model.model_info(), rowFraction(train, mp, model), model.iterations) .doAll(train) .model_info()); // distributed data (always in multi-node mode) if (stop_requested() && !timeout()) break; // cancellation if (!model.doScoring( trainScoreFrame, validScoreFrame, _job._key, model.iterations, false)) break; // finished training (or early stopping or convergence) if (timeout()) break; // stop after scoring } // replace the model with the best model so far (if it's better) if (!stop_requested() && _parms._overwrite_with_best_model && model.actual_best_model_key != null && _parms._nfolds == 0) { DeepLearningModel best_model = DKV.getGet(model.actual_best_model_key); if (best_model != null && best_model.loss() < model.loss() && Arrays.equals(best_model.model_info().units, model.model_info().units)) { if (!_parms._quiet_mode) Log.info("Setting the model to be the best model so far (based on scoring history)."); DeepLearningModelInfo mi = best_model.model_info().deep_clone(); // Don't cheat - count full amount of training samples, since that's the amount of // training it took to train (without finding anything better) mi.set_processed_global(model.model_info().get_processed_global()); mi.set_processed_local(model.model_info().get_processed_local()); model.set_model_info(mi); model.update(_job); model.doScoring(trainScoreFrame, validScoreFrame, _job._key, model.iterations, true); assert (best_model.loss() == model.loss()); } } // store coefficient names for future use // possibly change model.model_info().data_info().coefNames(); if (!_parms._quiet_mode) { Log.info( "=============================================================================================================================================================================="); if (stop_requested()) { Log.info("Deep Learning model training was interrupted."); } else { Log.info("Finished training the Deep Learning model."); Log.info(model); } Log.info( "=============================================================================================================================================================================="); } } finally { if (model != null) { model.deleteElasticAverageModels(); model.unlock(_job); if (model.actual_best_model_key != null) { assert (model.actual_best_model_key != model._key); DKV.remove(model.actual_best_model_key); } } } return model; }
@Override protected void compute2() { _model = null; // Resulting model! try { Scope.enter(); // Cleanup temp keys init(true); // Do any expensive tests & conversions now // Do lock even before checking the errors, since this block is finalized by unlock // (not the best solution, but the code is more readable) _parms.read_lock_frames(SharedTree.this); // Fetch & read-lock input frames if (error_count() > 0) throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(SharedTree.this); // New Model? Or continuing from a checkpoint? if (_parms._checkpoint && DKV.get(_parms._model_id) != null) { _model = DKV.get(_dest).get(); _model.write_lock(_key); // do not delete previous model; we are extending it } else { // New Model // Compute the zero-tree error - guessing only the class distribution. // MSE is stddev squared when guessing for regression. // For classification, guess the largest class. _model = makeModel( _dest, _parms, initial_MSE(_response, _response), _valid == null ? Double.NaN : initial_MSE(_response, _vresponse)); // Make a fresh model _model.delete_and_lock(_key); // and clear & write-lock it (smashing any prior) _model._output._init_f = _initialPrediction; } // Compute the response domain; makes for nicer printouts String[] domain = _response.domain(); assert (_nclass > 1 && domain != null) || (_nclass == 1 && domain == null); if (_nclass == 1) domain = new String[] {"r"}; // For regression, give a name to class 0 // Compute class distribution, used to for initial guesses and to // upsample minority classes (if asked for). if (_nclass > 1) { // Classification? // Handle imbalanced classes by stratified over/under-sampling. // initWorkFrame sets the modeled class distribution, and // model.score() corrects the probabilities back using the // distribution ratios if (_model._output.isClassifier() && _parms._balance_classes) { float[] trainSamplingFactors = new float [_train .lastVec() .domain() .length]; // leave initialized to 0 -> will be filled up below if (_parms._class_sampling_factors != null) { if (_parms._class_sampling_factors.length != _train.lastVec().domain().length) throw new IllegalArgumentException( "class_sampling_factors must have " + _train.lastVec().domain().length + " elements"); trainSamplingFactors = _parms._class_sampling_factors.clone(); // clone: don't modify the original } Frame stratified = water.util.MRUtils.sampleFrameStratified( _train, _train.lastVec(), _train.vec(_model._output.weightsName()), trainSamplingFactors, (long) (_parms._max_after_balance_size * _train.numRows()), _parms._seed, true, false); if (stratified != _train) { _train = stratified; _response = stratified.vec(_parms._response_column); _weights = stratified.vec(_parms._weights_column); // Recompute distribution since the input frame was modified MRUtils.ClassDist cdmt2 = _weights != null ? new MRUtils.ClassDist(_nclass).doAll(_response, _weights) : new MRUtils.ClassDist(_nclass).doAll(_response); _model._output._distribution = cdmt2.dist(); _model._output._modelClassDist = cdmt2.rel_dist(); } } Log.info("Prior class distribution: " + Arrays.toString(_model._output._priorClassDist)); Log.info("Model class distribution: " + Arrays.toString(_model._output._modelClassDist)); } // Also add to the basic working Frame these sets: // nclass Vecs of current forest results (sum across all trees) // nclass Vecs of working/temp data // nclass Vecs of NIDs, allowing 1 tree per class // Current forest values: results of summing the prior M trees for (int i = 0; i < _nclass; i++) _train.add("Tree_" + domain[i], _response.makeZero()); // Initial work columns. Set-before-use in the algos. for (int i = 0; i < _nclass; i++) _train.add("Work_" + domain[i], _response.makeZero()); // One Tree per class, each tree needs a NIDs. For empty classes use a -1 // NID signifying an empty regression tree. for (int i = 0; i < _nclass; i++) _train.add( "NIDs_" + domain[i], _response.makeCon( _model._output._distribution == null ? 0 : (_model._output._distribution[i] == 0 ? -1 : 0))); // Tag out rows missing the response column new ExcludeNAResponse().doAll(_train); // Variable importance: squared-error-improvement-per-variable-per-split _improvPerVar = new float[_ncols]; // Sub-class tree-model-builder specific build code buildModel(); done(); // Job done! } catch (Throwable t) { Job thisJob = DKV.getGet(_key); if (thisJob._state == JobState.CANCELLED) { Log.info("Job cancelled by user."); } else { t.printStackTrace(); failed(t); throw t; } } finally { if (_model != null) _model.unlock(_key); _parms.read_unlock_frames(SharedTree.this); if (_model == null) Scope.exit(); else { Scope.exit( _model._key, ModelMetrics.buildKey(_model, _parms.train()), ModelMetrics.buildKey(_model, _parms.valid())); } } tryComplete(); }