Chunk compress() { // Check for basic mode info: all missing or all strings or mixed stuff byte mode = type(); if (mode == AppendableVec.NA) // ALL NAs, nothing to do return new C0DChunk(Double.NaN, _len); for (int i = 0; i < _len; i++) if (mode == AppendableVec.ENUM && !isEnum(i) || mode == AppendableVec.NUMBER && isEnum(i)) setNA_impl(i); _naCnt = -1; type(); // Re-run rollups after dropping all numbers/enums // If the data was set8 as doubles, we do a quick check to see if it's // plain longs. If not, we give up and use doubles. if (_ds != null) { int i = 0; for (; i < _len; i++) // Attempt to inject all doubles into longs if (!Double.isNaN(_ds[i]) && (double) (long) _ds[i] != _ds[i]) break; if (i < _len) return chunkD(); _ls = new long[_ds.length]; // Else flip to longs _xs = new int[_ds.length]; for (i = 0; i < _len; i++) // Inject all doubles into longs if (Double.isNaN(_ds[i])) _xs[i] = Integer.MIN_VALUE; else _ls[i] = (long) _ds[i]; _ds = null; } // IF (_len2 > _len) THEN Sparse // Check for compressed *during appends*. Here we know: // - No specials; _xs[]==0. // - No floats; _ds==null // - NZ length in _len, actual length in _len2. // - Huge ratio between _len2 and _len, and we do NOT want to inflate to // the larger size; we need to keep it all small all the time. // - Rows in _xs // Data in some fixed-point format, not doubles // See if we can sanely normalize all the data to the same fixed-point. int xmin = Integer.MAX_VALUE; // min exponent found long lemin = 0, lemax = lemin; // min/max at xmin fixed-point boolean overflow = false; boolean floatOverflow = false; boolean first = true; double min = _len2 == _len ? Double.MAX_VALUE : 0; double max = _len2 == _len ? -Double.MAX_VALUE : 0; for (int i = 0; i < _len; i++) { if (isNA(i)) continue; long l = _ls[i]; int x = _xs[i]; if (x == Integer.MIN_VALUE + 1 || _len2 != _len) x = 0; // Replace enum flag with no scaling assert l != 0 || x == 0; // Exponent of zero is always zero // Compute per-chunk min/max double d = l * DParseTask.pow10(x); if (d < min) min = d; if (d > max) max = d; long t; // Remove extra scaling while (l != 0 && (t = l / 10) * 10 == l) { l = t; x++; } floatOverflow = Math.abs(l) > MAX_FLOAT_MANTISSA; if (first) { first = false; xmin = x; lemin = lemax = l; continue; } // Remove any trailing zeros / powers-of-10 if (overflow || (overflow = (Math.abs(xmin - x)) >= 10)) continue; // Track largest/smallest values at xmin scale. Note overflow. if (x < xmin) { lemin *= DParseTask.pow10i(xmin - x); lemax *= DParseTask.pow10i(xmin - x); xmin = x; // Smaller xmin } // *this* value, as a long scaled at the smallest scale long le = l * DParseTask.pow10i(x - xmin); if (le < lemin) lemin = le; if (le > lemax) lemax = le; } if (_len2 != _len) { // sparse? compare xmin/lemin/lemax with 0 lemin = Math.min(0, lemin); lemax = Math.max(0, lemax); } // Constant column? if (_naCnt == 0 && min == max) { return ((long) min == min) ? new C0LChunk((long) min, _len2) : new C0DChunk(min, _len2); } // Boolean column? if (max == 1 && min == 0 && xmin == 0) { if (_nzCnt * 32 < _len2 && _naCnt == 0 && _len2 < 65535 && xmin == 0) // Very sparse? (and not too big?) if (_len2 == _len) return new CX0Chunk(_ls, _len2, _nzCnt); // Dense constructor else return new CX0Chunk(_xs, _len2, _len); // Sparse constructor int bpv = _strCnt + _naCnt > 0 ? 2 : 1; // Bit-vector byte[] cbuf = bufB(bpv); return new CBSChunk(cbuf, cbuf[0], cbuf[1]); } final boolean fpoint = xmin < 0 || min < Long.MIN_VALUE || max > Long.MAX_VALUE; // Result column must hold floats? // Highly sparse but not a bitvector or constant? if (!fpoint && (_nzCnt + _naCnt) * 8 < _len2 && _len2 < 65535 && xmin == 0 && // (and not too big?) lemin > Short.MIN_VALUE && lemax <= Short.MAX_VALUE) // Only handling unbiased shorts here if (_len2 == _len) return new CX2Chunk(_ls, _xs, _len2, _nzCnt, _naCnt); // Sparse byte chunk else return new CX2Chunk(_ls, _xs, _len2, _len); // Exponent scaling: replacing numbers like 1.3 with 13e-1. '13' fits in a // byte and we scale the column by 0.1. A set of numbers like // {1.2,23,0.34} then is normalized to always be represented with 2 digits // to the right: {1.20,23.00,0.34} and we scale by 100: {120,2300,34}. // This set fits in a 2-byte short. // We use exponent-scaling for bytes & shorts only; it's uncommon (and not // worth it) for larger numbers. We need to get the exponents to be // uniform, so we scale up the largest lmax by the largest scale we need // and if that fits in a byte/short - then it's worth compressing. Other // wise we just flip to a float or double representation. if (overflow || fpoint && floatOverflow || -35 > xmin || xmin > 35) return chunkD(); if (fpoint) { if (lemax - lemin < 255) // Fits in scaled biased byte? return new C1SChunk(bufX(lemin, xmin, C1SChunk.OFF, 0), (int) lemin, DParseTask.pow10(xmin)); if (lemax - lemin < 65535) { // we use signed 2B short, add -32k to the bias! long bias = 32767 + lemin; return new C2SChunk(bufX(bias, xmin, C2SChunk.OFF, 1), (int) bias, DParseTask.pow10(xmin)); } if (lemax - lemin < Integer.MAX_VALUE) return new C4SChunk( bufX(lemin, xmin, C4SChunk.OFF, 2), (int) lemin, DParseTask.pow10(xmin)); return chunkD(); } // else an integer column // Compress column into a byte if (xmin == 0 && 0 <= lemin && lemax <= 255 && ((_naCnt + _strCnt) == 0)) return new C1NChunk(bufX(0, 0, C1NChunk.OFF, 0)); if (lemax - lemin < 255) { // Span fits in a byte? if (0 <= min && max < 255) // Span fits in an unbiased byte? return new C1Chunk(bufX(0, 0, C1Chunk.OFF, 0)); return new C1SChunk(bufX(lemin, xmin, C1SChunk.OFF, 0), (int) lemin, DParseTask.pow10i(xmin)); } // Compress column into a short if (lemax - lemin < 65535) { // Span fits in a biased short? if (xmin == 0 && Short.MIN_VALUE < lemin && lemax <= Short.MAX_VALUE) // Span fits in an unbiased short? return new C2Chunk(bufX(0, 0, C2Chunk.OFF, 1)); int bias = (int) (lemin - (Short.MIN_VALUE + 1)); return new C2SChunk(bufX(bias, xmin, C2SChunk.OFF, 1), bias, DParseTask.pow10i(xmin)); } // Compress column into ints if (Integer.MIN_VALUE < min && max <= Integer.MAX_VALUE) return new C4Chunk(bufX(0, 0, 0, 2)); return new C8Chunk(bufX(0, 0, 0, 3)); }
private Chunk compress2() { // Check for basic mode info: all missing or all strings or mixed stuff byte mode = type(); if (mode == Vec.T_BAD) // ALL NAs, nothing to do return new C0DChunk(Double.NaN, sparseLen()); if (mode == Vec.T_STR) return new CStrChunk(_sslen, _ss, sparseLen(), _len, _is, _isAllASCII); boolean rerun = false; if (mode == Vec.T_CAT) { for (int i = 0; i < sparseLen(); i++) if (isCategorical2(i)) _xs[i] = 0; else if (!isNA2(i)) { setNA_impl2(i); ++_naCnt; } // Smack any mismatched string/numbers } else if (mode == Vec.T_NUM) { for (int i = 0; i < sparseLen(); i++) if (isCategorical2(i)) { setNA_impl2(i); rerun = true; } } if (rerun) { _naCnt = -1; type(); } // Re-run rollups after dropping all numbers/categoricals boolean sparse = false; // sparse? treat as sparse iff we have at least MIN_SPARSE_RATIOx more zeros than nonzeros if (_sparseRatio * (_naCnt + _nzCnt) < _len) { set_sparse(_naCnt + _nzCnt); sparse = true; } else if (sparseLen() != _len) cancel_sparse(); // If the data is UUIDs there's not much compression going on if (_ds != null && _ls != null) return chunkUUID(); // cut out the easy all NaNs case if (_naCnt == _len) return new C0DChunk(Double.NaN, _len); // If the data was set8 as doubles, we do a quick check to see if it's // plain longs. If not, we give up and use doubles. if (_ds != null) { int i; // check if we can flip to ints for (i = 0; i < sparseLen(); ++i) if (!Double.isNaN(_ds[i]) && (double) (long) _ds[i] != _ds[i]) break; boolean isInteger = i == sparseLen(); boolean isConstant = !sparse || sparseLen() == 0; double constVal = 0; if (!sparse) { // check the values, sparse with some nonzeros can not be constant - has 0s and // (at least 1) nonzero constVal = _ds[0]; for (int j = 1; j < _len; ++j) if (_ds[j] != constVal) { isConstant = false; break; } } if (isConstant) return isInteger ? new C0LChunk((long) constVal, _len) : new C0DChunk(constVal, _len); if (!isInteger) return sparse ? new CXDChunk(_len, sparseLen(), 8, bufD(8)) : chunkD(); // Else flip to longs _ls = new long[_ds.length]; _xs = new int[_ds.length]; double[] ds = _ds; _ds = null; final int naCnt = _naCnt; for (i = 0; i < sparseLen(); i++) // Inject all doubles into longs if (Double.isNaN(ds[i])) setNA_impl2(i); else _ls[i] = (long) ds[i]; // setNA_impl2 will set _naCnt to -1! // we already know what the naCnt is (it did not change!) so set it back to correct value _naCnt = naCnt; } // IF (_len > _sparseLen) THEN Sparse // Check for compressed *during appends*. Here we know: // - No specials; _xs[]==0. // - No floats; _ds==null // - NZ length in _sparseLen, actual length in _len. // - Huge ratio between _len and _sparseLen, and we do NOT want to inflate to // the larger size; we need to keep it all small all the time. // - Rows in _xs // Data in some fixed-point format, not doubles // See if we can sanely normalize all the data to the same fixed-point. int xmin = Integer.MAX_VALUE; // min exponent found boolean floatOverflow = false; double min = Double.POSITIVE_INFINITY; double max = Double.NEGATIVE_INFINITY; int p10iLength = PrettyPrint.powers10i.length; long llo = Long.MAX_VALUE, lhi = Long.MIN_VALUE; int xlo = Integer.MAX_VALUE, xhi = Integer.MIN_VALUE; for (int i = 0; i < sparseLen(); i++) { if (isNA2(i)) continue; long l = _ls[i]; int x = _xs[i]; assert x != Integer.MIN_VALUE : "l = " + l + ", x = " + x; if (x == Integer.MIN_VALUE + 1) x = 0; // Replace categorical flag with no scaling assert l != 0 || x == 0 : "l == 0 while x = " + x + " ls = " + Arrays.toString(_ls); // Exponent of zero is always zero long t; // Remove extra scaling while (l != 0 && (t = l / 10) * 10 == l) { l = t; x++; } // Compute per-chunk min/max double d = l * PrettyPrint.pow10(x); if (d < min) { min = d; llo = l; xlo = x; } if (d > max) { max = d; lhi = l; xhi = x; } floatOverflow = l < Integer.MIN_VALUE + 1 || l > Integer.MAX_VALUE; xmin = Math.min(xmin, x); } if (sparse) { // sparse? then compare vs implied 0s if (min > 0) { min = 0; llo = 0; xlo = 0; } if (max < 0) { max = 0; lhi = 0; xhi = 0; } xmin = Math.min(xmin, 0); } // Constant column? if (_naCnt == 0 && (min == max)) { if (llo == lhi && xlo == 0 && xhi == 0) return new C0LChunk(llo, _len); else if ((long) min == min) return new C0LChunk((long) min, _len); else return new C0DChunk(min, _len); } // Compute min & max, as scaled integers in the xmin scale. // Check for overflow along the way boolean overflow = ((xhi - xmin) >= p10iLength) || ((xlo - xmin) >= p10iLength); long lemax = 0, lemin = 0; if (!overflow) { // Can at least get the power-of-10 without overflow long pow10 = PrettyPrint.pow10i(xhi - xmin); lemax = lhi * pow10; // Hacker's Delight, Section 2-13, checking overflow. // Note that the power-10 is always positive, so the test devolves this: if ((lemax / pow10) != lhi) overflow = true; // Note that xlo might be > xmin; e.g. { 101e-49 , 1e-48}. long pow10lo = PrettyPrint.pow10i(xlo - xmin); lemin = llo * pow10lo; if ((lemin / pow10lo) != llo) overflow = true; } // Boolean column? if (max == 1 && min == 0 && xmin == 0 && !overflow) { if (sparse) { // Very sparse? return _naCnt == 0 ? new CX0Chunk(_len, sparseLen(), bufS(0)) // No NAs, can store as sparse bitvector : new CXIChunk(_len, sparseLen(), 1, bufS(1)); // have NAs, store as sparse 1byte values } int bpv = _catCnt + _naCnt > 0 ? 2 : 1; // Bit-vector byte[] cbuf = bufB(bpv); return new CBSChunk(cbuf, cbuf[0], cbuf[1]); } final boolean fpoint = xmin < 0 || min < Long.MIN_VALUE || max > Long.MAX_VALUE; if (sparse) { if (fpoint) return new CXDChunk(_len, sparseLen(), 8, bufD(8)); int sz = 8; if (Short.MIN_VALUE <= min && max <= Short.MAX_VALUE) sz = 2; else if (Integer.MIN_VALUE <= min && max <= Integer.MAX_VALUE) sz = 4; return new CXIChunk(_len, sparseLen(), sz, bufS(sz)); } // Exponent scaling: replacing numbers like 1.3 with 13e-1. '13' fits in a // byte and we scale the column by 0.1. A set of numbers like // {1.2,23,0.34} then is normalized to always be represented with 2 digits // to the right: {1.20,23.00,0.34} and we scale by 100: {120,2300,34}. // This set fits in a 2-byte short. // We use exponent-scaling for bytes & shorts only; it's uncommon (and not // worth it) for larger numbers. We need to get the exponents to be // uniform, so we scale up the largest lmax by the largest scale we need // and if that fits in a byte/short - then it's worth compressing. Other // wise we just flip to a float or double representation. if (overflow || (fpoint && floatOverflow) || -35 > xmin || xmin > 35) return chunkD(); final long leRange = leRange(lemin, lemax); if (fpoint) { if ((int) lemin == lemin && (int) lemax == lemax) { if (leRange < 255) // Fits in scaled biased byte? return new C1SChunk(bufX(lemin, xmin, C1SChunk._OFF, 0), lemin, PrettyPrint.pow10(xmin)); if (leRange < 65535) { // we use signed 2B short, add -32k to the bias! long bias = 32767 + lemin; return new C2SChunk(bufX(bias, xmin, C2SChunk._OFF, 1), bias, PrettyPrint.pow10(xmin)); } } if (leRange < 4294967295l) { long bias = 2147483647l + lemin; return new C4SChunk(bufX(bias, xmin, C4SChunk._OFF, 2), bias, PrettyPrint.pow10(xmin)); } return chunkD(); } // else an integer column // Compress column into a byte if (xmin == 0 && 0 <= lemin && lemax <= 255 && ((_naCnt + _catCnt) == 0)) return new C1NChunk(bufX(0, 0, C1NChunk._OFF, 0)); if (lemin < Integer.MIN_VALUE) return new C8Chunk(bufX(0, 0, 0, 3)); if (leRange < 255) { // Span fits in a byte? if (0 <= min && max < 255) // Span fits in an unbiased byte? return new C1Chunk(bufX(0, 0, C1Chunk._OFF, 0)); return new C1SChunk(bufX(lemin, xmin, C1SChunk._OFF, 0), lemin, PrettyPrint.pow10i(xmin)); } // Compress column into a short if (leRange < 65535) { // Span fits in a biased short? if (xmin == 0 && Short.MIN_VALUE < lemin && lemax <= Short.MAX_VALUE) // Span fits in an unbiased short? return new C2Chunk(bufX(0, 0, C2Chunk._OFF, 1)); long bias = (lemin - (Short.MIN_VALUE + 1)); return new C2SChunk(bufX(bias, xmin, C2SChunk._OFF, 1), bias, PrettyPrint.pow10i(xmin)); } // Compress column into ints if (Integer.MIN_VALUE < min && max <= Integer.MAX_VALUE) return new C4Chunk(bufX(0, 0, 0, 2)); return new C8Chunk(bufX(0, 0, 0, 3)); }