@Override public ValFrame apply(Env env, Env.StackHelp stk, AstRoot asts[]) { Frame f = stk.track(asts[1].exec(env)).getFrame(); AstRoot axisAR = asts[2]; for (Vec v : f.vecs()) { if (v.isCategorical() || v.isString() || v.isUUID()) throw new IllegalArgumentException( "Cumulative functions not applicable to enum, string, or UUID values"); } double axis = axisAR.exec(env).getNum(); if (axis != 1.0 && axis != 0.0) throw new IllegalArgumentException("Axis must be 0 or 1"); if (f.numCols() == 1) { if (axis == 0.0) { AstCumu.CumuTask t = new AstCumu.CumuTask(f.anyVec().nChunks(), init()); t.doAll(new byte[] {Vec.T_NUM}, f.anyVec()); final double[] chkCumu = t._chkCumu; Vec cumuVec = t.outputFrame().anyVec(); new MRTask() { @Override public void map(Chunk c) { if (c.cidx() != 0) { double d = chkCumu[c.cidx() - 1]; for (int i = 0; i < c._len; ++i) c.set(i, op(c.atd(i), d)); } } }.doAll(cumuVec); return new ValFrame(new Frame(cumuVec)); } else { return new ValFrame(new Frame(f)); } } else { if (axis == 0.0) { // down the column implementation AstCumu.CumuTaskWholeFrame t = new AstCumu.CumuTaskWholeFrame(f.anyVec().nChunks(), init(), f.numCols()); Frame fr2 = t.doAll(f.numCols(), Vec.T_NUM, f).outputFrame(null, f.names(), null); final double[][] chkCumu = t._chkCumu; new MRTask() { @Override public void map(Chunk cs[]) { if (cs[0].cidx() != 0) { for (int i = 0; i < cs.length; i++) { double d = chkCumu[i][cs[i].cidx() - 1]; for (int j = 0; j < cs[i]._len; ++j) cs[i].set(j, op(cs[i].atd(j), d)); } } } }.doAll(fr2); return new ValFrame(new Frame(fr2)); } else { AstCumu.CumuTaskAxis1 t = new AstCumu.CumuTaskAxis1(init()); Frame fr2 = t.doAll(f.numCols(), Vec.T_NUM, f).outputFrame(null, f.names(), null); return new ValFrame(new Frame(fr2)); } } }
@Override protected Frame predictScoreImpl(Frame orig, Frame adaptedFr, String destination_key) { Frame adaptFrm = new Frame(adaptedFr); for (int i = 0; i < _parms._k; i++) adaptFrm.add("PC" + String.valueOf(i + 1), adaptFrm.anyVec().makeZero()); new MRTask() { @Override public void map(Chunk chks[]) { double tmp[] = new double[_output._names.length]; double preds[] = new double[_parms._k]; for (int row = 0; row < chks[0]._len; row++) { double p[] = score0(chks, row, tmp, preds); for (int c = 0; c < preds.length; c++) chks[_output._names.length + c].set(row, p[c]); } } }.doAll(adaptFrm); // Return the projection into principal component space int x = _output._names.length, y = adaptFrm.numCols(); Frame f = adaptFrm.extractFrame( x, y); // this will call vec_impl() and we cannot call the delete() below just yet f = new Frame( (null == destination_key ? Key.make() : Key.make(destination_key)), f.names(), f.vecs()); DKV.put(f); makeMetricBuilder(null).makeModelMetrics(this, orig); return f; }
@Override public void map(Chunk[] ix, NewChunk[] ncs) { final Vec[] vecs = new Vec[_cols.length]; final Vec anyv = _base.anyVec(); final long nrow = anyv.length(); long r = ix[0].at80(0); int last_ci = anyv.elem2ChunkIdx(r < nrow ? r : 0); // memoize the last chunk index long last_c0 = anyv._espc[last_ci]; // ... last chunk start long last_c1 = anyv._espc[last_ci + 1]; // ... last chunk end Chunk[] last_cs = new Chunk[vecs.length]; // ... last chunks for (int c = 0; c < _cols.length; c++) { vecs[c] = _base.vecs()[_cols[c]]; last_cs[c] = vecs[c].elem2BV(last_ci); } for (int i = 0; i < ix[0]._len; i++) { // select one row r = ix[0].at80(i) - 1; // next row to select if (r < 0) continue; if (r >= nrow) { for (int c = 0; c < vecs.length; c++) ncs[c].addNum(Double.NaN); } else { if (r < last_c0 || r >= last_c1) { last_ci = anyv.elem2ChunkIdx(r); last_c0 = anyv._espc[last_ci]; last_c1 = anyv._espc[last_ci + 1]; for (int c = 0; c < vecs.length; c++) last_cs[c] = vecs[c].elem2BV(last_ci); } for (int c = 0; c < vecs.length; c++) ncs[c].addNum(last_cs[c].at(r)); } } }
@Override public void onCompletion(CountedCompleter caller) { assert _out.numRows() == _in.numRows(); assert _out.anyVec()._espc.length == (_nchunks + 1); _in.unlock(_jobKey); _out.update(_jobKey); _out.unlock(_jobKey); }
/** Appends an entire Frame */ public Frame add(Frame fr) { assert anyVec().group().equals(fr.anyVec().group()); final int len0 = _names.length; final int len1 = fr._names.length; final int len = len0 + len1; _names = Arrays.copyOf(_names, len); _vecs = Arrays.copyOf(_vecs, len); _keys = Arrays.copyOf(_keys, len); System.arraycopy(fr._names, 0, _names, len0, len1); System.arraycopy(fr._vecs, 0, _vecs, len0, len1); System.arraycopy(fr._keys, 0, _keys, len0, len1); return this; }
// Make vector templates for all output frame vectors private Vec[][] makeTemplates(Frame dataset, float[] ratios) { Vec anyVec = dataset.anyVec(); final long[][] espcPerSplit = computeEspcPerSplit(anyVec._espc, anyVec.length(), ratios); final int num = dataset.numCols(); // number of columns in input frame final int nsplits = espcPerSplit.length; // number of splits final String[][] domains = dataset.domains(); // domains Vec[][] t = new Vec[nsplits][ /*num*/]; // resulting vectors for all for (int i = 0; i < nsplits; i++) { // vectors for j-th split t[i] = new Vec(Vec.newKey(), espcPerSplit[i /*-th split*/]).makeZeros(num, domains); } return t; }
@Override Val apply(Env env, Env.StackHelp stk, AST asts[]) { Frame fr = stk.track(asts[1].exec(env)).getFrame(); if (fr.numCols() == 1 && fr.numRows() == 1) { if (fr.anyVec().isNumeric() || fr.anyVec().isBad()) return new ValNum(fr.anyVec().at(0)); else if (fr.anyVec().isString()) return new ValStr(fr.anyVec().atStr(new BufferedString(), 0).toString()); return new ValStr(fr.domains()[0][(int) fr.anyVec().at8(0)]); } return new ValFrame(fr); // did not flatten }
@Test public void testGroupbyTableSpeed() { Frame ids = parse_test_file(Key.make("cov"), "smalldata/junit/id_cols.csv"); ids.replace(0, ids.anyVec().toCategoricalVec()).remove(); System.out.println(ids.toString(0, 10)); long start = System.currentTimeMillis(); Val v_gb = Exec.exec("(GB cov [0] nrow 0 \"all\")"); System.out.println("GB Time= " + (System.currentTimeMillis() - start) + "msec"); System.out.println(v_gb.toString()); ((ValFrame) v_gb)._fr.delete(); long start2 = System.currentTimeMillis(); Val v_tb = Exec.exec("(table cov FALSE)"); System.out.println("Table Time= " + (System.currentTimeMillis() - start2) + "msec"); System.out.println(v_tb.toString()); ((ValFrame) v_tb)._fr.delete(); ids.delete(); }
/** * Compute the L2 norm for each row of the frame * * @param fr Input frame * @return Vec containing L2 values for each row, is in K-V store */ public static Vec getL2(final Frame fr, final double[] scale) { // add workspace vec at end final int idx = fr.numCols(); assert (scale.length == idx) : "Mismatch for number of columns"; fr.add("L2", fr.anyVec().makeZero()); Vec res; try { new MRTask2() { @Override public void map(Chunk[] cs) { for (int r = 0; r < cs[0]._len; r++) { double norm2 = 0; for (int i = 0; i < idx; i++) norm2 += Math.pow(cs[i].at0(r) * scale[i], 2); cs[idx].set0(r, Math.sqrt(norm2)); } } }.doAll(fr); } finally { res = fr.remove(idx); } res.rollupStats(); return res; }
@Override protected Frame rebalance(final Frame original_fr, boolean local, final String name) { if (original_fr == null) return null; if (_parms._force_load_balance) { int original_chunks = original_fr.anyVec().nChunks(); _job.update(0, "Load balancing " + name.substring(name.length() - 5) + " data..."); int chunks = desiredChunks(original_fr, local); if (!_parms._reproducible) { if (original_chunks >= chunks) { if (!_parms._quiet_mode) Log.info( "Dataset already contains " + original_chunks + " chunks. No need to rebalance."); return original_fr; } } else { // reproducible, set chunks to 1 assert chunks == 1; if (!_parms._quiet_mode) Log.warn("Reproducibility enforced - using only 1 thread - can be slow."); if (original_chunks == 1) return original_fr; } if (!_parms._quiet_mode) Log.info( "Rebalancing " + name.substring(name.length() - 5) + " dataset into " + chunks + " chunks."); Key newKey = Key.make(name + ".chks" + chunks); RebalanceDataSet rb = new RebalanceDataSet(original_fr, newKey, chunks); H2O.submitTask(rb).join(); Frame rebalanced_fr = DKV.get(newKey).get(); Scope.track(rebalanced_fr); return rebalanced_fr; } return original_fr; }
// GLRM scoring is data imputation based on feature domains using reconstructed XY (see Udell // (2015), Section 5.3) private Frame reconstruct( Frame orig, Frame adaptedFr, Key destination_key, boolean save_imputed, boolean reverse_transform) { final int ncols = _output._names.length; assert ncols == adaptedFr.numCols(); String prefix = "reconstr_"; // Need [A,X,P] where A = adaptedFr, X = loading frame, P = imputed frame // Note: A is adapted to original training frame, P has columns shuffled so cats come before // nums! Frame fullFrm = new Frame(adaptedFr); Frame loadingFrm = DKV.get(_output._representation_key).get(); fullFrm.add(loadingFrm); String[][] adaptedDomme = adaptedFr.domains(); for (int i = 0; i < ncols; i++) { Vec v = fullFrm.anyVec().makeZero(); v.setDomain(adaptedDomme[i]); fullFrm.add(prefix + _output._names[i], v); } GLRMScore gs = new GLRMScore(ncols, _parms._k, save_imputed, reverse_transform).doAll(fullFrm); // Return the imputed training frame int x = ncols + _parms._k, y = fullFrm.numCols(); Frame f = fullFrm.extractFrame( x, y); // this will call vec_impl() and we cannot call the delete() below just yet f = new Frame((null == destination_key ? Key.make() : destination_key), f.names(), f.vecs()); DKV.put(f); gs._mb.makeModelMetrics( GLRMModel.this, orig, null, null); // save error metrics based on imputed data return f; }
/** * Train a Deep Learning neural net model * * @param model Input model (e.g., from initModel(), or from a previous training run) * @return Trained model */ public final DeepLearningModel trainModel(DeepLearningModel model) { Frame validScoreFrame = null; Frame train, trainScoreFrame; try { // if (checkpoint == null && !quiet_mode) logStart(); //if checkpoint is given, some // Job's params might be uninitialized (but the restarted model's parameters are correct) if (model == null) { model = DKV.get(dest()).get(); } Log.info( "Model category: " + (_parms._autoencoder ? "Auto-Encoder" : isClassifier() ? "Classification" : "Regression")); final long model_size = model.model_info().size(); Log.info( "Number of model parameters (weights/biases): " + String.format("%,d", model_size)); model.write_lock(_job); _job.update(0, "Setting up training data..."); final DeepLearningParameters mp = model.model_info().get_params(); // temporary frames of the same "name" as the orig _train/_valid (asking the parameter's // Key, not the actual frame) // Note: don't put into DKV or they would overwrite the _train/_valid frames! Frame tra_fr = new Frame(mp._train, _train.names(), _train.vecs()); Frame val_fr = _valid != null ? new Frame(mp._valid, _valid.names(), _valid.vecs()) : null; train = tra_fr; if (model._output.isClassifier() && mp._balance_classes) { _job.update(0, "Balancing class distribution of training data..."); float[] trainSamplingFactors = new float [train .lastVec() .domain() .length]; // leave initialized to 0 -> will be filled up below if (mp._class_sampling_factors != null) { if (mp._class_sampling_factors.length != train.lastVec().domain().length) throw new IllegalArgumentException( "class_sampling_factors must have " + train.lastVec().domain().length + " elements"); trainSamplingFactors = mp._class_sampling_factors.clone(); // clone: don't modify the original } train = sampleFrameStratified( train, train.lastVec(), train.vec(model._output.weightsName()), trainSamplingFactors, (long) (mp._max_after_balance_size * train.numRows()), mp._seed, true, false); Vec l = train.lastVec(); Vec w = train.vec(model._output.weightsName()); MRUtils.ClassDist cd = new MRUtils.ClassDist(l); model._output._modelClassDist = _weights != null ? cd.doAll(l, w).rel_dist() : cd.doAll(l).rel_dist(); } model.training_rows = train.numRows(); if (_weights != null && _weights.min() == 0 && _weights.max() == 1 && _weights.isInt()) { model.training_rows = Math.round(train.numRows() * _weights.mean()); Log.warn( "Not counting " + (train.numRows() - model.training_rows) + " rows with weight=0 towards an epoch."); } Log.info("One epoch corresponds to " + model.training_rows + " training data rows."); trainScoreFrame = sampleFrame( train, mp._score_training_samples, mp._seed); // training scoring dataset is always sampled uniformly from the training // dataset if (trainScoreFrame != train) Scope.track(trainScoreFrame); if (!_parms._quiet_mode) Log.info("Number of chunks of the training data: " + train.anyVec().nChunks()); if (val_fr != null) { model.validation_rows = val_fr.numRows(); // validation scoring dataset can be sampled in multiple ways from the given validation // dataset if (model._output.isClassifier() && mp._balance_classes && mp._score_validation_sampling == DeepLearningParameters.ClassSamplingMethod.Stratified) { _job.update(0, "Sampling validation data (stratified)..."); validScoreFrame = sampleFrameStratified( val_fr, val_fr.lastVec(), val_fr.vec(model._output.weightsName()), null, mp._score_validation_samples > 0 ? mp._score_validation_samples : val_fr.numRows(), mp._seed + 1, false /* no oversampling */, false); } else { _job.update(0, "Sampling validation data..."); validScoreFrame = sampleFrame(val_fr, mp._score_validation_samples, mp._seed + 1); if (validScoreFrame != val_fr) Scope.track(validScoreFrame); } if (!_parms._quiet_mode) Log.info( "Number of chunks of the validation data: " + validScoreFrame.anyVec().nChunks()); } // Set train_samples_per_iteration size (cannot be done earlier since this depends on // whether stratified sampling is done) model.actual_train_samples_per_iteration = computeTrainSamplesPerIteration(mp, model.training_rows, model); // Determine whether shuffling is enforced if (mp._replicate_training_data && (model.actual_train_samples_per_iteration == model.training_rows * (mp._single_node_mode ? 1 : H2O.CLOUD.size())) && !mp._shuffle_training_data && H2O.CLOUD.size() > 1 && !mp._reproducible) { if (!mp._quiet_mode) Log.info( "Enabling training data shuffling, because all nodes train on the full dataset (replicated training data)."); mp._shuffle_training_data = true; } if (!mp._shuffle_training_data && model.actual_train_samples_per_iteration == model.training_rows && train.anyVec().nChunks() == 1) { if (!mp._quiet_mode) Log.info( "Enabling training data shuffling to avoid training rows in the same order over and over (no Hogwild since there's only 1 chunk)."); mp._shuffle_training_data = true; } // if (!mp._quiet_mode) Log.info("Initial model:\n" + model.model_info()); long now = System.currentTimeMillis(); model._timeLastIterationEnter = now; if (_parms._autoencoder) { _job.update(0, "Scoring null model of autoencoder..."); if (!mp._quiet_mode) Log.info("Scoring the null model of the autoencoder."); model.doScoring( trainScoreFrame, validScoreFrame, _job._key, 0, false); // get the null model reconstruction error } // put the initial version of the model into DKV model.update(_job); model.total_setup_time_ms += now - _job.start_time(); Log.info("Total setup time: " + PrettyPrint.msecs(model.total_setup_time_ms, true)); Log.info("Starting to train the Deep Learning model."); _job.update(0, "Training..."); // main loop for (; ; ) { model.iterations++; model.set_model_info( mp._epochs == 0 ? model.model_info() : H2O.CLOUD.size() > 1 && mp._replicate_training_data ? (mp._single_node_mode ? new DeepLearningTask2( _job._key, train, model.model_info(), rowFraction(train, mp, model), model.iterations) .doAll(Key.make(H2O.SELF)) .model_info() : // replicated data + single node mode new DeepLearningTask2( _job._key, train, model.model_info(), rowFraction(train, mp, model), model.iterations) .doAllNodes() .model_info()) : // replicated data + multi-node mode new DeepLearningTask( _job._key, model.model_info(), rowFraction(train, mp, model), model.iterations) .doAll(train) .model_info()); // distributed data (always in multi-node mode) if (stop_requested() && !timeout()) break; // cancellation if (!model.doScoring( trainScoreFrame, validScoreFrame, _job._key, model.iterations, false)) break; // finished training (or early stopping or convergence) if (timeout()) break; // stop after scoring } // replace the model with the best model so far (if it's better) if (!stop_requested() && _parms._overwrite_with_best_model && model.actual_best_model_key != null && _parms._nfolds == 0) { DeepLearningModel best_model = DKV.getGet(model.actual_best_model_key); if (best_model != null && best_model.loss() < model.loss() && Arrays.equals(best_model.model_info().units, model.model_info().units)) { if (!_parms._quiet_mode) Log.info("Setting the model to be the best model so far (based on scoring history)."); DeepLearningModelInfo mi = best_model.model_info().deep_clone(); // Don't cheat - count full amount of training samples, since that's the amount of // training it took to train (without finding anything better) mi.set_processed_global(model.model_info().get_processed_global()); mi.set_processed_local(model.model_info().get_processed_local()); model.set_model_info(mi); model.update(_job); model.doScoring(trainScoreFrame, validScoreFrame, _job._key, model.iterations, true); assert (best_model.loss() == model.loss()); } } // store coefficient names for future use // possibly change model.model_info().data_info().coefNames(); if (!_parms._quiet_mode) { Log.info( "=============================================================================================================================================================================="); if (stop_requested()) { Log.info("Deep Learning model training was interrupted."); } else { Log.info("Finished training the Deep Learning model."); Log.info(model); } Log.info( "=============================================================================================================================================================================="); } } finally { if (model != null) { model.deleteElasticAverageModels(); model.unlock(_job); if (model.actual_best_model_key != null) { assert (model.actual_best_model_key != model._key); DKV.remove(model.actual_best_model_key); } } } return model; }
@Override Val apply(Env env, Env.StackHelp stk, AST asts[]) { // Execute all args. Find a canonical frame; all Frames must look like this one. // Each argument turns into either a Frame (whose rows are entirely // inlined) or a scalar (which is replicated across as a single row). Frame fr = null; // Canonical Frame; all frames have the same column count, types and names int nchks = 0; // Total chunks Val vals[] = new Val[asts.length]; // Computed AST results for (int i = 1; i < asts.length; i++) { vals[i] = stk.track(asts[i].exec(env)); if (vals[i].isFrame()) { fr = vals[i].getFrame(); nchks += fr.anyVec().nChunks(); // Total chunks } else nchks++; // One chunk per scalar } // No Frame, just a pile-o-scalars? Vec zz = null; // The zero-length vec for the zero-frame frame if (fr == null) { // Zero-length, 1-column, default name fr = new Frame(new String[] {Frame.defaultColName(0)}, new Vec[] {zz = Vec.makeZero(0)}); if (asts.length == 1) return new ValFrame(fr); } // Verify all Frames are the same columns, names, and types. Domains can vary, and will be the // union final Frame frs[] = new Frame[asts.length]; // Input frame final byte[] types = fr.types(); // Column types final int ncols = fr.numCols(); final long[] espc = new long[nchks + 1]; // Compute a new layout! int coffset = 0; for (int i = 1; i < asts.length; i++) { Val val = vals[i]; // Save values computed for pass 2 Frame fr0 = val.isFrame() ? val.getFrame() // Scalar: auto-expand into a 1-row frame : stk.track(new Frame(fr._names, Vec.makeCons(val.getNum(), 1L, fr.numCols()))); // Check that all frames are compatible if (fr.numCols() != fr0.numCols()) throw new IllegalArgumentException( "rbind frames must have all the same columns, found " + fr.numCols() + " and " + fr0.numCols() + " columns."); if (!Arrays.deepEquals(fr._names, fr0._names)) throw new IllegalArgumentException( "rbind frames must have all the same column names, found " + Arrays.toString(fr._names) + " and " + Arrays.toString(fr0._names)); if (!Arrays.equals(types, fr0.types())) throw new IllegalArgumentException( "rbind frames must have all the same column types, found " + Arrays.toString(types) + " and " + Arrays.toString(fr0.types())); frs[i] = fr0; // Save frame // Roll up the ESPC row counts long roffset = espc[coffset]; long[] espc2 = fr0.anyVec().espc(); for (int j = 1; j < espc2.length; j++) // Roll up the row counts espc[coffset + j] = (roffset + espc2[j]); coffset += espc2.length - 1; // Chunk offset } if (zz != null) zz.remove(); // build up the new domains for each vec HashMap<String, Integer>[] dmap = new HashMap[types.length]; String[][] domains = new String[types.length][]; int[][][] cmaps = new int[types.length][][]; for (int k = 0; k < types.length; ++k) { dmap[k] = new HashMap<>(); int c = 0; byte t = types[k]; if (t == Vec.T_CAT) { int[][] maps = new int[frs.length][]; for (int i = 1; i < frs.length; i++) { maps[i] = new int[frs[i].vec(k).domain().length]; for (int j = 0; j < maps[i].length; j++) { String s = frs[i].vec(k).domain()[j]; if (!dmap[k].containsKey(s)) dmap[k].put(s, maps[i][j] = c++); else maps[i][j] = dmap[k].get(s); } } cmaps[k] = maps; } else { cmaps[k] = new int[frs.length][]; } domains[k] = c == 0 ? null : new String[c]; for (Map.Entry<String, Integer> e : dmap[k].entrySet()) domains[k][e.getValue()] = e.getKey(); } // Now make Keys for the new Vecs Key<Vec>[] keys = fr.anyVec().group().addVecs(fr.numCols()); Vec[] vecs = new Vec[fr.numCols()]; int rowLayout = Vec.ESPC.rowLayout(keys[0], espc); for (int i = 0; i < vecs.length; i++) vecs[i] = new Vec(keys[i], rowLayout, domains[i], types[i]); // Do the row-binds column-by-column. // Switch to F/J thread for continuations ParallelRbinds t; H2O.submitTask(t = new ParallelRbinds(frs, espc, vecs, cmaps)).join(); return new ValFrame(new Frame(fr.names(), t._vecs)); }
public Frame deepSlice(Object orows, Object ocols) { // ocols is either a long[] or a Frame-of-1-Vec long[] cols; if (ocols == null) { cols = (long[]) ocols; assert cols == null; } else { if (ocols instanceof long[]) { cols = (long[]) ocols; } else if (ocols instanceof Frame) { Frame fr = (Frame) ocols; if (fr.numCols() != 1) { throw new IllegalArgumentException( "Columns Frame must have only one column (actually has " + fr.numCols() + " columns)"); } long n = fr.anyVec().length(); if (n > MAX_EQ2_COLS) { throw new IllegalArgumentException( "Too many requested columns (requested " + n + ", max " + MAX_EQ2_COLS + ")"); } cols = new long[(int) n]; Vec v = fr._vecs[0]; for (long i = 0; i < v.length(); i++) { cols[(int) i] = v.at8(i); } } else { throw new IllegalArgumentException( "Columns is specified by an unsupported data type (" + ocols.getClass().getName() + ")"); } } // Since cols is probably short convert to a positive list. int c2[] = null; if (cols == null) { c2 = new int[numCols()]; for (int i = 0; i < c2.length; i++) c2[i] = i; } else if (cols.length == 0) { c2 = new int[0]; } else if (cols[0] > 0) { c2 = new int[cols.length]; for (int i = 0; i < cols.length; i++) c2[i] = (int) cols[i] - 1; // Convert 1-based cols to zero-based } else { c2 = new int[numCols() - cols.length]; int j = 0; for (int i = 0; i < numCols(); i++) { if (j >= cols.length || i < (-cols[j] - 1)) c2[i - j] = i; else j++; } } for (int i = 0; i < c2.length; i++) if (c2[i] >= numCols()) throw new IllegalArgumentException( "Trying to select column " + c2[i] + " but only " + numCols() + " present."); if (c2.length == 0) throw new IllegalArgumentException( "No columns selected (did you try to select column 0 instead of column 1?)"); // Do Da Slice // orows is either a long[] or a Vec if (orows == null) return new DeepSlice((long[]) orows, c2) .doAll(c2.length, this) .outputFrame(names(c2), domains(c2)); else if (orows instanceof long[]) { final long CHK_ROWS = 1000000; long[] rows = (long[]) orows; if (rows.length == 0) return new DeepSlice(rows, c2).doAll(c2.length, this).outputFrame(names(c2), domains(c2)); if (rows[0] < 0) return new DeepSlice(rows, c2).doAll(c2.length, this).outputFrame(names(c2), domains(c2)); // Vec'ize the index array AppendableVec av = new AppendableVec("rownames"); int r = 0; int c = 0; while (r < rows.length) { NewChunk nc = new NewChunk(av, c); long end = Math.min(r + CHK_ROWS, rows.length); for (; r < end; r++) { nc.addNum(rows[r]); } nc.close(c++, null); } Vec c0 = av.close(null); // c0 is the row index vec Frame fr2 = new Slice(c2, this) .doAll(c2.length, new Frame(new String[] {"rownames"}, new Vec[] {c0})) .outputFrame(names(c2), domains(c2)); UKV.remove(c0._key); // Remove hidden vector return fr2; } Frame frows = (Frame) orows; Vec vrows = frows.anyVec(); // It's a compatible Vec; use it as boolean selector. // Build column names for the result. Vec[] vecs = new Vec[c2.length + 1]; String[] names = new String[c2.length + 1]; for (int i = 0; i < c2.length; ++i) { vecs[i] = _vecs[c2[i]]; names[i] = _names[c2[i]]; } vecs[c2.length] = vrows; names[c2.length] = "predicate"; return new DeepSelect() .doAll(c2.length, new Frame(names, vecs)) .outputFrame(names(c2), domains(c2)); }