/** * run as <CODE> * java -cp <classpath> tests.DDETest <params_file> [random_seed] [maxfuncevals] * </CODE>. The params_file must contain lines of the following form: * * <ul> * <li>class,dde.function, <fullclasspathname> mandatory, the java class name defining the * function to be optimized, which must accept as arguments either <CODE>double[]</CODE> or * <CODE>VectorIntf</CODE> objects. * <li>class,dde.localoptimizer, <fullclasspathname> optional the java class name of an * object implementing the LocalOptimizerIntf defined in the popt4jlib.GradientDescent * package, to be used as further optimizer of the best solution found by the DE process. * <li>dde.numdimensions, $num$ mandatory, the dimension of the domain of the function to be * minimized. * <li>dde.numtries, $num$ optional, the total number of "tries", default is 100. * <li>dde.numthreads, $num$ optional, the number of threads to use, default is 1. * <li>rndgen,$num$,$num2$ mandatory, specifies the starting random seed to use for each of the * $num2$ threads to use (the value num2 must equal the number given in the line for * dde.numthreads). * <li>dde.popsize, $num$ optional, the total population size in each iteration, default is 10. * <li>dde.w, $num$ optional, the "weight" of the DE process, a double number in [0,2], default * is 1.0 * <li>dde.px, $num$ optional, the "crossover rate" of the DE process, a double number in [0,1], * default is 0.9 * <li>dde.minargval, $num$ optional, a double number that is a lower bound for all variables of * the optimization process, i.e. all variables must satisfy x_i ≥ $num$, default is * -infinity * <li>dde.maxargval, $num$ optional, a double number that is an upper bound for all variables * of the optimization process, i.e. all variables must satisfy x_i ≤ $num$, default is * +infinity * <li>dde.minargval$i$, $num$ optional, a double number that is a lower bound for the i-th * variable of the optimization process, i.e. variable must satisfy x_i ≥ $num$, default * is -infinity * <li>dde.maxargval$i$, $num$ optional, a double number that is an upper bound for the i-th * variable of the optimization process, i.e. variable must satisfy x_i ≤ $num$, default * is +infinity * <li>dde.de/best/1/binstrategy, $val$ optional, a boolean value that if present and true, * indicates that the DE/best/1/bin strategy should be used in evolving the population * instead of the DE/rand/1/bin strategy, default is false * <li>dde.nondeterminismok, $val$ optional, a boolean value indicating whether the method * should return always the same value given the same parameters and same random seed(s). * The method can be made to run much faster in a multi-core setting if this flag is set to * true (at the expense of deterministic results) getting the CPU utilization to reach * almost 100% as opposed to around 60% otherwise, default is false * <li>dde.countfuncevals, $val$ optional, a boolean value indicating whether or not the process * should be counting the number of function evaluations it performs, default is false * <li><"dde.dmpaddress", String location> optional, if existing, specifies the location * of a distributed Msg-Passing server that implements the basic send/recv operations as * specified in <CODE>parallel.distributed.DActiveMsgPassingCoordinatorLongLivedConnSrv[Clt] * </CODE> default is null * <li><"dde.dmpport", Integer port> optional, if existing, specifies the port number of a * distributed Msg-Passing server implementing the basic send/recv operations as specified * in <CODE>parallel.distributed.DActiveMsgPassingCoordinatorLongLivedConnSrv[Clt]</CODE> * default is null * <li><"dde.dmpthisprocessid", Integer myid> optional, if existing, it indicates the id * of this process (this is the number to use in a recvData(myid) call on the * DActiveMsgPassingCoordinatorLongLivedConnClt object) default is null * <li><"dde.dmpnextprocessid", Integer id> optional, if existing, it indicates the id of * the process to which this process should be sending "migrants" to; (this is the number to * use as the "send address" in a sendData(myid, id, data) DActiveblahblah call); default is * null * <li><"dde.numgensbetweenmigrations", Integer num> optional, if existing, it indicates * the number of generations that must pass between two successive "migrations" between DDE * island-processes; default is 10 * <li><"dde.nummigrants",Integer num> optional, if it exists, indicates how many migrants * will be sent and received from each dde process; default is 10 * <li><"dde.reducerhost", String host> optional, if existing, it indicates the address in * which the reducer server resides; default is null * <li><"dde.reducerport", Integer port> optional, if existing, it indicates the address * in which the reducer server process listens at; default is -1 * </ul> * * <p>Notice that in case of running DDE in a distributed manner, there are two important * constraints: * * <ul> * <li>First of all, the various processes participating in the distributed DDE process must * have their dde.dmpthisprocessid and dde.dmpnextprocessid parameters set up so that the * flow of migration forms an exact ring, e.g. for a 3-process DDE we have that DDE_0 sends * migrants to DDE_1 which sends migrants to DDE_2 which sends migrants to DDE_0. * <li>The constraint dde.numgensbetweenmigrations ≤ dde.numtries must hold. * </ul> * * Otherwise, there is no way for processes to block in at least one migration cycle (and thereby * have the DReduceSrv know the total number of processes before the final reduce operation), and * therefore the distributed reduce operation afterwards is not guaranteed to work properly. * * <p>if the second optional argument is passed in, it overrides the random seed specified in the * params_file (specified as the 1st arg in cmd-line). * * <p>The optional third argument, if present, overrides any max. limit set on the number of * function evaluations allowed. After this limit, the function will always return * Double.MAX_VALUE instead, and won't increase the evaluation count. Obviously, for this limit to * be enforced, the "dde.countfuncevals" flag must be set to true in the params_file (1st arg in * the command line) * * @param args String[] */ public static void main(String[] args) { try { long start_time = System.currentTimeMillis(); HashMap params = utils.DataMgr.readPropsFromFile(args[0]); if (args.length > 1) { long seed = Long.parseLong(args[1]); RndUtil.getInstance().setSeed(seed); // updates all extra instances too! } if (args.length > 2) { long num = Long.parseLong(args[2]); params.put("maxfuncevalslimit", new Long(num)); } FunctionIntf func = (FunctionIntf) params.get("dde.function"); if (params.containsKey("dde.countfuncevals") && ((Boolean) params.get("dde.countfuncevals")).booleanValue() == true) { FunctionBase wrapper_func = new FunctionBase(func); params.put("dde.function", wrapper_func); func = wrapper_func; } DDE opter = new DDE(params); utils.PairObjDouble p = opter.minimize(func); VectorIntf arg = (VectorIntf) p.getArg(); System.out.print("best soln found:["); for (int i = 0; i < arg.getNumCoords(); i++) System.out.print(arg.getCoord(i) + " "); System.out.println("] VAL=" + p.getDouble()); // final local optimization utils.PairObjDouble p2 = null; LocalOptimizerIntf lasdst = (LocalOptimizerIntf) params.get("dde.localoptimizer"); if (lasdst != null) { VectorIntf x0 = arg.newInstance(); // arg.newCopy(); params.put("gradientdescent.x0", x0); lasdst.setParams(params); p2 = lasdst.minimize(func); VectorIntf xf = (VectorIntf) p2.getArg(); System.out.print("Optimized (via a GradientDescent local method) best soln found:["); for (int i = 0; i < xf.getNumCoords(); i++) System.out.print(xf.getCoord(i) + " "); System.out.println("] VAL=" + p2.getDouble()); } if (func instanceof FunctionBase) System.err.println("total function evaluations=" + ((FunctionBase) func).getEvalCount()); long dur = System.currentTimeMillis() - start_time; double val = (p2 == null || p2.getDouble() >= Double.MAX_VALUE) ? p.getDouble() : p2.getDouble(); System.out.println("total time (msecs): " + dur); if (func instanceof FunctionBase) System.out.println( "VVV," + val + ",TTT," + dur + ",NNN," + ((FunctionBase) func).getEvalCount() + ",PPP,DDE,FFF," + args[0]); // for parser program to extract from output } catch (Exception e) { e.printStackTrace(); System.exit(-1); } }
/** * run as <CODE> * java -cp <classpath> graph.packing.DBBGASPPacker <graphfilename> <paramsfilename> [maxnumBBnodes] [numthreads] * </CODE>. <br> * args[0]: graph file name must adhere to the format specified in the description of the method * <CODE>utils.DataMgr.readGraphFromFile2(String file)</CODE> <br> * args[1]: params file name may define parameters in lines of the following form: * * <ul> * <li>acchost, $string$ optional, the internet address of the DAccumulatorSrv that will be * accumulating incumbents. Default is localhost. * <li>accport, $num$ optional, the port to which the DAccumulatorSrv listens. Default is 7900. * <li>cchost, $string$ optional, the internet address of the DConditionCounterSrv that will be * listening for distributed condition-counter requests. Default is localhost. * <li>ccport, $num$ optional, the port to which the DAccumulatorSrv listens. Default is 7899. * <li>pdahost, $string$ optional, the internet address of the PDAsynchBatchTaskExecutorSrv that * will be listening for distributed tasks execution requests. Default is localhost. * <li>pdaport, $num$ optional, the port to which the asynch distributed executor server * listens. Default is 7981. * <li>tightenboundlevel, $num$ optional, the depth in the B&B tree constructed at which a * stronger computation of the upper bound will be started, default is 0. * <li>cutnodes, $boolean$ optional, if true, then when the BBQueue of nodes is full, any new * nodes created will be discarded instead of processed on the same thread. Default is * false. * <li>localsearch, $boolean$ optional, if true, then when an incumbent solution is found that * cannot be further improved, a local search kicks in to try to improve it using (unless * there is another explicit specification) the (default) N1RXP(FirstImproving) neighborhood * concept that basically attempts to remove a single node from the solution and then see * how many other nodes it can add to the reduced solution. This local search can become * quite expensive and for this reason it is only applied to final incumbent solutions in * the B & B-tree construction process. Default is false. * <li>class,localsearchtype, <fullclassname>[,optionalarguments] optional if present, * will utilize in the local-search procedure the <CODE>AllChromosomeMakerClonableIntf * </CODE> specified in the classname, constructed using the arguments specified (if * present). For example, the line could be: * <PRE> * class,localsearchtype,graph.packing.IntSetN2RXPGraphAllMovesMaker,1 * </PRE> * which would be of use with MWIS problems, for random graphs in the class C(n,p), * producing G_{|V|,p} type random graphs. On the other hand, by default, the <CODE> * IntSetN1RXPFirstImprovingGraphAllMovesMakerMT</CODE> moves maker applies both for 1- and * 2-packing problems local-search, which is also better suited when solving MWIS problems * arising from duals of disk graphs (arising from wireless ad-hoc networks etc.) Currently * works only with MWIS (k=1) type problems and is ignored for 2-packing problems. * <li>usemaxsubsets, $boolean$ optional, if false, then each GASP process augmenting candidate * packings will augment these sets one node at a time, leading to the possibility that many * active nodes in the B&B tree will represent the same packing. In such a case, a * "recent-nodes" queue will be used to safe-guard against the possibility of having the * same nodes created and processed within a "short" interval. Default is true. * <li>sortmaxsubsets, $boolean$ optional, if true, then the max subsets generated in method * <CODE>getBestNodeSets2Add()</CODE> will be sorted in descending weight order so that if * children <CODE>BBNode*</CODE> objects are "cut", they will be the "least" heavy-weight. * Default is false. * <li>maxitersinGBNS2A, $num$ optional, if present and also the "usemaxsubsets" key is true, * then the number represents the max number of iterations the <CODE>getBestNodeSets2Add() * </CODE> method of the <CODE>DBBNode1</CODE> class will be allowed to go through. Default * is 100000 (specified in <CODE>DBBTree</CODE> class.) * <li>useGWMIN2criterion, $boolean$ optional, if true, then when computing the best nodes to * consider as a partial solution is being expanded, the "GWMIN2-heuristic" criterion * (described in Sakai et. al. 2003: "A note on greedy algorithms for the MWIS problem", * Discr. Appl. Math., 126:313-322) will be used for nodes selection in 1-packing problems. * Default is false. * <li>maxnodechildren, $num$ optional, specify an upper bound on the number of children any * node is allowed to create. Default is Integer.MAX_VALUE. * <li>class,dbbnodecomparator, <fullclassname> optional, the full class name of a class * implementing the <CODE>graph.packing.DBBNodeComparatorIntf</CODE> that is used to define * the order in which B&B nodes in the tree are picked for processing. Default is <CODE> * graph.packing.DefDBBNodeComparator</CODE>. * <li>ff, $num$ optional, specify the "fudge factor" used in determining what constitutes the * list of "best nodes" in the 1-packing problem (a.k.a. the MWIS problem) where it makes * much more sense to have a "fudge factor" by which to multiply the best cost in order to * determine if a node is "close enough" to the best cost to be included in the * best-candidate-nodes list. Default value is <CODE>DBBNode1._ff</CODE> (currently set to * 0.85). The smaller this value, the longer it will take for the search to complete, with * potentially better solutions found. * <li>minknownbound, $num$ optional, a known bound to the problem at hand, which will be used * to fathom B&B nodes having smaller bounds than this number. Currently only applies to * 1-packing problems. Default is -infinity. * <li>expandlocalsearchfactor, $num$ optional, if present, then when a solution is found within * the specified factor of the best known solution, a local search kicks in. Default is 1.0 * (only when a best solution is found does local search kicks in). Currently only applies * to 1-packing problems. * </ul> * * <br> * args[2]: [optional] override max num nodes in params_file to create in B&B procedure * * <p>This implementation writes the solution in a text file called "sol.out" in the current * directory, whose lines contain one number each, the id of each "active" node in the solution * (id in the set {1,...graph_num_nodes}). * * @param args String[] */ public static void main(String[] args) { try { if (args.length < 2) { System.err.println( "usage: java -cp <classpath> graph.packing.DBBGASPPacker <graphfilename> <paramsfilename> [maxnumBBnodes]"); System.exit(-1); } long start = System.currentTimeMillis(); Graph g = DataMgr.readGraphFromFile2(args[0]); // print out total value weight of the nodes { double totw = 0.0; for (int i = 0; i < g.getNumNodes(); i++) { Double w = g.getNode(i).getWeightValue("value"); totw += w == null ? 1.0 : w.doubleValue(); } System.err.println("Graph total nodes' weight=" + totw); } HashMap params = DataMgr.readPropsFromFile(args[1]); int maxnodes = -1; if (args.length > 2) maxnodes = Integer.parseInt(args[2]); // override max num nodes Graph[] graphs = null; if (g.getNumComponents() > 1) { // graphs = g.getGraphComponents(); System.err.println( "Distributed BBGASPPacker does not currently support breaking graphs into disconnected components..."); System.exit(-1); } else { // optimize when there is only one component in the graph graphs = new Graph[1]; graphs[0] = g; } // now run the B&B algorithm for each sub-graph PrintWriter pw = new PrintWriter(new FileWriter("sol.out")); for (int j = 0; j < graphs.length; j++) { Graph gj = graphs[j]; System.err.println( "Solving for subgraph " + (j + 1) + " w/ sz=" + gj.getNumNodes() + " (/" + graphs.length + ")"); if (gj.getNumNodes() == 3 && gj.getNumArcs() == 2) { _totActiveNodes += 2; ++_totLeafNodes; // figure out which node is the connecting one int best_node_id = -1; for (int m = 0; m < 3; m++) { Node nm = gj.getNode(m); if (nm.getNbors().size() == 1) { Double nmwD = nm.getWeightValue("value"); double w = nmwD == null ? 1.0 : nmwD.doubleValue(); _totActiveNodeWeights += w; Integer mI = (Integer) gj.getNodeLabel(m); best_node_id = mI == null ? m : mI.intValue(); // null mI -> g connected pw.println((best_node_id + 1)); } } continue; } else if (gj.getNumNodes() <= 2) { ++_totActiveNodes; ++_totLeafNodes; // figure out max. node-weight int best_node_id = -1; double maxw = Double.NEGATIVE_INFINITY; for (int m = 0; m < gj.getNumNodes(); m++) { Double nmwD = gj.getNode(m).getWeightValue("value"); double nmw = nmwD == null ? 1.0 : nmwD.doubleValue(); if (nmw > maxw) { maxw = nmw; Integer mI = (Integer) gj.getNodeLabel(m); best_node_id = mI == null ? m : mI.intValue(); // null mI -> g connected } } _totActiveNodeWeights += maxw; pw.println((best_node_id + 1)); continue; } // double bound = Double.MAX_VALUE; double bound = 0; String pdahost = "localhost"; if (params.containsKey("pdahost")) pdahost = (String) params.get("pdahost"); int pdaport = 7981; if (params.containsKey("pdaport")) pdaport = ((Integer) params.get("pdaport")).intValue(); String cchost = "localhost"; if (params.containsKey("cchost")) cchost = (String) params.get("cchost"); int ccport = 7899; if (params.containsKey("ccport")) ccport = ((Integer) params.get("ccport")).intValue(); String acchost = "localhost"; if (params.containsKey("acchost")) acchost = (String) params.get("acchost"); int accport = 7900; if (params.containsKey("accport")) accport = ((Integer) params.get("accport")).intValue(); // DBBTree.init(g, bound, pdahost, pdaport, cchost, ccport, acchost, accport); // DBBTree t = DBBTree.getInstance(); Boolean localSearchB = (Boolean) params.get("localsearch"); // if (localSearchB != null) t.setLocalSearch(localSearchB.booleanValue()); boolean localsearch = false; if (localSearchB != null) localsearch = localSearchB.booleanValue(); AllChromosomeMakerClonableIntf maker = (AllChromosomeMakerClonableIntf) params.get("localsearchtype"); // if (maker!=null) t.setLocalSearchType(maker); Double ffD = (Double) params.get("ff"); /* if (ffD!=null) { DBBNode1.setFF(ffD.doubleValue()); DBBNode1.disallowFFChanges(); } */ double ff = 0.85; if (ffD != null) ff = ffD.doubleValue(); Integer tlvlI = (Integer) params.get("tightenboundlevel"); /* if (tlvlI != null && tlvlI.intValue() >= 1) t.setTightenUpperBoundLvl( tlvlI.intValue()); */ int tlvl = Integer.MAX_VALUE; if (tlvlI != null && tlvlI.intValue() >= 1) tlvl = tlvlI.intValue(); Boolean usemaxsubsetsB = (Boolean) params.get("usemaxsubsets"); boolean usemaxsubsets = true; if (usemaxsubsetsB != null) // t.setUseMaxSubsets(usemaxsubsetsB.booleanValue()); usemaxsubsets = usemaxsubsetsB.booleanValue(); int kmax = Integer.MAX_VALUE; Integer kmaxI = (Integer) params.get("maxitersinGBNS2A"); if (kmaxI != null && kmaxI.intValue() > 0) // t.setMaxAllowedItersInGBNS2A(kmaxI.intValue()); kmax = kmaxI.intValue(); Boolean sortmaxsubsetsB = (Boolean) params.get("sortmaxsubsets"); boolean sortmaxsubsets = false; if (sortmaxsubsetsB != null) // t.setSortBestCandsInGBNS2A(sortmaxsubsetsB.booleanValue()); sortmaxsubsets = sortmaxsubsetsB.booleanValue(); Double avgpercextranodes2addD = (Double) params.get("avgpercextranodes2add"); double apen2a = 0.0; if (avgpercextranodes2addD != null) // t.setAvgPercExtraNodes2Add(avgpercextranodes2addD.doubleValue()); apen2a = avgpercextranodes2addD.doubleValue(); Boolean useGWMIN24BN2AB = (Boolean) params.get("useGWMIN2criterion"); boolean ugwm2 = false; if (useGWMIN24BN2AB != null) // t.setUseGWMIN24BestNodes2Add(useGWMIN24BN2AB.booleanValue()); ugwm2 = useGWMIN24BN2AB.booleanValue(); Double expandlocalsearchfactorD = (Double) params.get("expandlocalsearchfactor"); double elsf = 1.0; if (expandlocalsearchfactorD != null) // t.setLocalSearchExpandFactor(expandlocalsearchfactorD.doubleValue()); elsf = expandlocalsearchfactorD.doubleValue(); double mkb = Double.NEGATIVE_INFINITY; Double minknownboundD = (Double) params.get("minknownbound"); if (minknownboundD != null) // t.setMinKnownBound(minknownboundD.doubleValue()); mkb = minknownboundD.doubleValue(); int maxchildren = Integer.MAX_VALUE; Integer maxchildrenI = (Integer) params.get("maxnodechildren"); if (maxchildrenI != null && maxchildrenI.intValue() > 0) // t.setMaxChildrenNodesAllowed(maxchildrenI.intValue()); maxchildren = maxchildrenI.intValue(); DBBNodeComparatorIntf bbcomp = (DBBNodeComparatorIntf) params.get("dbbnodecomparator"); // if (bbcomp!=null) t.setDBBNodeComparator(bbcomp); DBBTree.init( g, bound, pdahost, pdaport, cchost, ccport, acchost, accport, localsearch, maker, ff, tlvl, usemaxsubsets, kmax, sortmaxsubsets, apen2a, ugwm2, elsf, mkb, maxchildren, bbcomp); DBBTree t = DBBTree.getInstance(); t.run(); int orsoln[] = t.getSolution(); int tan = 0; double tanw = 0.0; for (int i = 0; i < orsoln.length; i++) { if (orsoln[i] == 1) { Integer miI = (Integer) gj.getNodeLabel(i); int mi = (miI == null) ? i : miI.intValue(); // null miI -> g connected // System.out.print( mi + " "); pw.println((mi + 1)); ++tan; Double twD = gj.getNode(i).getWeightValue("value"); tanw += (twD == null ? 1.0 : twD.doubleValue()); } } // tanw == t.getBound() System.err.println("Total BB-nodes=" + t.getCounter()); System.err.println("Total leaf BB-nodes=" + t.getTotLeafNodes()); _totActiveNodes += tan; _totActiveNodeWeights += tanw; _totLeafNodes += t.getTotLeafNodes(); System.err.println( "Total active nodes so far: " + _totActiveNodes + " active node weights=" + _totActiveNodeWeights + " total overall trees leaf BB nodes=" + _totLeafNodes); System.err.println( "Total #DLS searched performed: " + t.getNumDLSPerformed() + " Total time spent on DLS: " + t.getTimeSpentOnDLS()); } pw.flush(); pw.close(); long time = System.currentTimeMillis() - start; System.out.println("Best Soln = " + _totActiveNodeWeights); System.out.println("\nWall-clock Time (msecs): " + time); System.out.println("Done."); System.exit(0); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } }