private void transform() {
   for (int i = 1; i <= 10; i++) {
     for (int j = 0; j < 26; j++)
       for (int k = 1; k <= 10; k++) {
         // strings.put(""+i+Utils.intToChar(j)+k, levenshtein.Utils.transform(new
         // RecordParser("records\\"+i+"\\"+Utils.intToChar(j)+"\\"+Utils.intToChar(j)+k+".txt").parse()));
         strings.put(
             "" + i + Utils.intToChar(j) + k,
             algorithm.levenshtein.Utils.transform(
                 new RecordParser(
                         "records/"
                             + i
                             + "/"
                             + Utils.intToChar(j)
                             + "/"
                             + Utils.intToChar(j)
                             + k
                             + ".txt")
                     .parse()));
       }
     System.out.println(i + " transformed");
   }
 }
 public void UI() {
   for (int normalisation = 0; normalisation <= 0; normalisation++) {
     tw = new TraceWriter("UI2LettersStochasticLevenshtein6Norm" + normalisation + ".txt");
     tw.println(
         "-------------------------------------------------- User Dependent -------------------------------------------------");
     tw.println();
     for (int numberTrainingExamples = 6; numberTrainingExamples <= 6; numberTrainingExamples++) {
       confusionMatrixes.clear();
       for (int knn = 0; knn < numberTrainingExamples; knn++)
         confusionMatrixes.add(new int[26][26]);
       tw.println(
           "------------------------------------------- numberTrainingExamples="
               + numberTrainingExamples
               + " ---------------------------------------");
       tw.println();
       userRecognitionRates = new double[10][9];
       for (int user = 1; user <= 10; user++) {
         UI(user, numberTrainingExamples, normalisation);
       }
       for (int knn = 0; knn < confusionMatrixes.size(); knn++) {
         tw.println(
             "normalisation="
                 + normalisation
                 + "    numberTrainingExamples="
                 + numberTrainingExamples
                 + "    knn="
                 + (knn + 1)
                 + " :");
         tw.println();
         tw.println(Utils.matrixToString(confusionMatrixes.get(knn)));
         tw.println(Utils.matrixToStringForLatex(confusionMatrixes.get(knn)));
         double[] informations = Utils.informations(confusionMatrixes.get(knn));
         tw.println();
         tw.println(
             "normalisation="
                 + normalisation
                 + "    numberTrainingExamples="
                 + numberTrainingExamples
                 + "    knn="
                 + (knn + 1)
                 + " :");
         tw.println();
         for (int user = 0; user < 10; user++)
           tw.println(
               "Recognition rate for user" + (user + 1) + " = " + userRecognitionRates[user][knn]);
         tw.println();
         tw.println("Goodclass examples = " + informations[0]);
         tw.println("Badclass examples = " + informations[1]);
         tw.println("total examples = " + informations[2]);
         tw.println("Recognition rate = " + informations[3]);
         tw.println(
             "----------------------------------------------------------------------------------------------------------------");
         tw.println();
         tw.println();
         tw.println();
       }
       tw.println(
           "================================================================================================================");
       tw.println();
     }
     tw.close();
   }
 }
  public void UI(int user, int numberTrainingExamples, int normalisation) {
    List<int[][]> userConfusionMatrixes = new ArrayList<int[][]>();
    for (int knn = 0; knn < numberTrainingExamples; knn++)
      userConfusionMatrixes.add(new int[26][26]);
    for (int firstUserIndex = 1; firstUserIndex <= 10; firstUserIndex++) {
      String[] alphabet = {"0", "1", "2", "3", "4", "5", "6", "7"};
      ConditionalRecognizer cr = new ConditionalRecognizer(alphabet);
      for (int letterIndex = 0; letterIndex < 26; letterIndex++) {
        int mod = 0;
        int threshold = firstUserIndex + numberTrainingExamples;
        for (int otherUser = firstUserIndex; mod * 10 + otherUser < threshold; otherUser++) {
          if (otherUser == user) {
            if (otherUser == 10) {
              otherUser = 1;
              mod = 1;
            } else otherUser++;
            threshold++;
          }
          cr.addTemplate(
              Utils.intToChar(letterIndex) + "",
              strings.get("" + otherUser + Utils.intToChar(letterIndex) + "1"));

          if (otherUser == 10) {
            otherUser = 0;
            mod = 1;
          }
        }
      }

      cr.compile(normalisation);

      for (int knn = numberTrainingExamples; knn <= numberTrainingExamples; knn++) {
        for (int letterIndex = 0; letterIndex < 26; letterIndex++) {
          for (int teIndex = 1; teIndex <= 10; teIndex++) {

            String[] foundLetters =
                cr.recognizeForAllKnn(
                    strings.get("" + user + Utils.intToChar(letterIndex) + teIndex),
                    normalisation,
                    knn);
            for (int i = 0; i < foundLetters.length; i++) {
              String foundChar = foundLetters[i];
              confusionMatrixes.get(i)[letterIndex][Utils.charToInt(foundChar.charAt(0))]++;
              userConfusionMatrixes.get(i)[letterIndex][Utils.charToInt(foundChar.charAt(0))]++;
            }
            System.out.println(
                "norm="
                    + normalisation
                    + "|nte="
                    + numberTrainingExamples
                    + "|user="******"|fui="
                    + firstUserIndex
                    + "|char="
                    + Utils.intToChar(letterIndex)
                    + " recognized");
          }
        }
      }
    }
    for (int knn = 0; knn < numberTrainingExamples; knn++)
      userRecognitionRates[user - 1][knn] = Utils.recognitionRate(userConfusionMatrixes.get(knn));
  }