/**
   * Traverse the statements in the given body, looking for aggregation possibilities; that is,
   * given a def d and a use u, d has no other uses, u has no other defs, collapse d and u.
   *
   * <p>option: only-stack-locals; if this is true, only aggregate variables starting with $
   */
  protected void internalTransform(Body b, String phaseName, Map<String, String> options) {
    StmtBody body = (StmtBody) b;
    boolean onlyStackVars = PhaseOptions.getBoolean(options, "only-stack-locals");

    int aggregateCount = 1;

    if (Options.v().time()) Timers.v().aggregationTimer.start();
    boolean changed = false;

    Map<ValueBox, Zone> boxToZone =
        new HashMap<ValueBox, Zone>(body.getUnits().size() * 2 + 1, 0.7f);

    // Determine the zone of every box
    {
      Zonation zonation = new Zonation(body);

      for (Unit u : body.getUnits()) {
        Zone zone = zonation.getZoneOf(u);

        for (ValueBox box : u.getUseBoxes()) {
          boxToZone.put(box, zone);
        }

        for (ValueBox box : u.getDefBoxes()) {
          boxToZone.put(box, zone);
        }
      }
    }

    do {
      if (Options.v().verbose())
        G.v()
            .out
            .println(
                "["
                    + body.getMethod().getName()
                    + "] Aggregating iteration "
                    + aggregateCount
                    + "...");

      // body.printTo(new java.io.PrintWriter(G.v().out, true));

      changed = internalAggregate(body, boxToZone, onlyStackVars);

      aggregateCount++;
    } while (changed);

    if (Options.v().time()) Timers.v().aggregationTimer.end();
  }
Exemple #2
0
    /**
     * Returns a <code>ThrowableSet</code> representing the set of exceptions included in <code>
     * include</code> minus the set of exceptions included in <code>exclude</code>. Creates a new
     * <code>ThrowableSet</code> only if there was not already one whose contents correspond to
     * <code>include</code> - <code>exclude</code>.
     *
     * @param include A set of {@link RefLikeType} objects representing exception types included in
     *     the result; may be <code>null</code> if there are no included types.
     * @param exclude A set of {@link AnySubType} objects representing exception types excluded from
     *     the result; may be <code>null</code> if there are no excluded types.
     * @return a <code>ThrowableSet</code> representing the set of exceptions corresponding to
     *     <code>include</code> - <code>exclude</code>.
     */
    private ThrowableSet registerSetIfNew(Set include, Set exclude) {
      if (INSTRUMENTING) {
        registrationCalls++;
      }
      if (include == null) {
        include = Collections.EMPTY_SET;
      }
      if (exclude == null) {
        exclude = Collections.EMPTY_SET;
      }
      int size = include.size() + exclude.size();
      Integer sizeKey = new Integer(size);

      List sizeList = (List) sizeToSets.get(sizeKey);
      if (sizeList == null) {
        sizeList = new LinkedList();
        sizeToSets.put(sizeKey, sizeList);
      }
      for (Iterator i = sizeList.iterator(); i.hasNext(); ) {
        ThrowableSet set = (ThrowableSet) i.next();
        if (set.exceptionsIncluded.equals(include) && set.exceptionsExcluded.equals(exclude)) {
          return set;
        }
      }
      if (INSTRUMENTING) {
        registeredSets++;
      }
      ThrowableSet result = new ThrowableSet(include, exclude);
      sizeList.add(result);
      return result;
    }
  /**
   * given a DelayabilityAnalysis and the computations of each unit, calculates the latest
   * computation-point for each expression.<br>
   * the <code>equivRhsMap</code> could be calculated on the fly, but it is <b>very</b> likely that
   * it already exists (as similar maps are used for calculating Earliestness, Delayed,...<br>
   * the shared set allows more efficient set-operations, when they the computation is merged with
   * other analyses/computations.
   *
   * @param dg a ExceptionalUnitGraph
   * @param delayed the delayability-analysis of the same graph.
   * @param equivRhsMap all computations of the graph
   * @param set the shared flowSet
   */
  public LatestComputation(
      UnitGraph unitGraph, DelayabilityAnalysis delayed, Map equivRhsMap, BoundedFlowSet set) {
    unitToLatest = new HashMap<Unit, FlowSet>(unitGraph.size() + 1, 0.7f);

    Iterator unitIt = unitGraph.iterator();
    while (unitIt.hasNext()) {
      /* create a new Earliest-list for each unit */
      Unit currentUnit = (Unit) unitIt.next();

      /* basically the latest-set is:
       * (delayed) INTERSECT (comp UNION (UNION_successors ~Delayed)) =
       * (delayed) MINUS ((INTERSECTION_successors Delayed) MINUS comp).
       */

      FlowSet delaySet = (FlowSet) delayed.getFlowBefore(currentUnit);

      /* Calculate (INTERSECTION_successors Delayed) */
      FlowSet succCompSet = (FlowSet) set.topSet();
      List succList = unitGraph.getSuccsOf(currentUnit);
      Iterator succIt = succList.iterator();
      while (succIt.hasNext()) {
        Unit successor = (Unit) succIt.next();
        succCompSet.intersection((FlowSet) delayed.getFlowBefore(successor), succCompSet);
      }
      /* remove the computation of this set: succCompSet is then:
       * ((INTERSECTION_successors Delayed) MINUS comp) */
      if (equivRhsMap.get(currentUnit) != null) succCompSet.remove(equivRhsMap.get(currentUnit));

      /* make the difference: */
      FlowSet latest = (FlowSet) delaySet.emptySet();
      delaySet.difference(succCompSet, latest);

      unitToLatest.put(currentUnit, latest);
    }
  }
Exemple #4
0
  /**
   * Utility method that produces a new map from the {@link Unit}s of this graph's body to the union
   * of the values stored in the two argument {@link Map}s, used to combine the maps of exceptional
   * and unexceptional predecessors and successors into maps of all predecessors and successors. The
   * values stored in both argument maps must be {@link List}s of {@link Unit}s, which are assumed
   * not to contain any duplicate <tt>Unit</tt>s.
   *
   * @param mapA The first map to be combined.
   * @param mapB The second map to be combined.
   */
  protected Map combineMapValues(Map mapA, Map mapB) {
    // The duplicate screen
    Map result = new HashMap(mapA.size() * 2 + 1, 0.7f);
    for (Iterator chainIt = unitChain.iterator(); chainIt.hasNext(); ) {
      Unit unit = (Unit) chainIt.next();
      List listA = (List) mapA.get(unit);
      if (listA == null) {
        listA = Collections.EMPTY_LIST;
      }
      List listB = (List) mapB.get(unit);
      if (listB == null) {
        listB = Collections.EMPTY_LIST;
      }

      int resultSize = listA.size() + listB.size();
      if (resultSize == 0) {
        result.put(unit, Collections.EMPTY_LIST);
      } else {
        List resultList = new ArrayList(resultSize);
        Iterator listIt = null;
        // As a minor optimization of the duplicate screening,
        // copy the longer list first.
        if (listA.size() >= listB.size()) {
          resultList.addAll(listA);
          listIt = listB.iterator();
        } else {
          resultList.addAll(listB);
          listIt = listA.iterator();
        }
        while (listIt.hasNext()) {
          Object element = listIt.next();
          // It is possible for there to be both an exceptional
          // and an unexceptional edge connecting two Units
          // (though probably not in a class generated by
          // javac), so we need to screen for duplicates. On the
          // other hand, we expect most of these lists to have
          // only one or two elements, so it doesn't seem worth
          // the cost to build a Set to do the screening.
          if (!resultList.contains(element)) {
            resultList.add(element);
          }
        }
        result.put(unit, Collections.unmodifiableList(resultList));
      }
    }
    return result;
  }
Exemple #5
0
 /**
  * Utility method for adding an edge to maps representing the CFG.
  *
  * @param unitToSuccs The {@link Map} from {@link Unit}s to {@link List}s of their successors.
  * @param unitToPreds The {@link Map} from {@link Unit}s to {@link List}s of their successors.
  * @param head The {@link Unit} from which the edge starts.
  * @param tail The {@link Unit} to which the edge flows.
  */
 protected void addEdge(Map unitToSuccs, Map unitToPreds, Unit head, Unit tail) {
   List headsSuccs = (List) unitToSuccs.get(head);
   if (headsSuccs == null) {
     headsSuccs = new ArrayList(3); // We expect this list to
     // remain short.
     unitToSuccs.put(head, headsSuccs);
   }
   if (!headsSuccs.contains(tail)) {
     headsSuccs.add(tail);
     List tailsPreds = (List) unitToPreds.get(tail);
     if (tailsPreds == null) {
       tailsPreds = new ArrayList();
       unitToPreds.put(tail, tailsPreds);
     }
     tailsPreds.add(head);
   }
 }
Exemple #6
0
  private void addBoxToPatch(String aLabelName, UnitBox aUnitBox) {
    List patchList = (List) mLabelToPatchList.get(aLabelName);
    if (patchList == null) {
      patchList = new ArrayList();
      mLabelToPatchList.put(aLabelName, patchList);
    }

    patchList.add(aUnitBox);
  }
Exemple #7
0
  /**
   * Utility method for <tt>UnitGraph</tt> constructors. It computes the edges corresponding to
   * unexceptional control flow.
   *
   * @param unitToSuccs A {@link Map} from {@link Unit}s to {@link List}s of {@link Unit}s. This is
   *     an ``out parameter''; callers must pass an empty {@link Map}.
   *     <tt>buildUnexceptionalEdges</tt> will add a mapping for every <tt>Unit</tt> in the body to
   *     a list of its unexceptional successors.
   * @param unitToPreds A {@link Map} from {@link Unit}s to {@link List}s of {@link Unit}s. This is
   *     an ``out parameter''; callers must pass an empty {@link Map}.
   *     <tt>buildUnexceptionalEdges</tt> will add a mapping for every <tt>Unit</tt> in the body to
   *     a list of its unexceptional predecessors.
   */
  protected void buildUnexceptionalEdges(Map unitToSuccs, Map unitToPreds) {

    // Initialize the predecessor sets to empty
    for (Iterator unitIt = unitChain.iterator(); unitIt.hasNext(); ) {
      unitToPreds.put(unitIt.next(), new ArrayList());
    }

    Iterator unitIt = unitChain.iterator();
    Unit currentUnit, nextUnit;

    nextUnit = unitIt.hasNext() ? (Unit) unitIt.next() : null;

    while (nextUnit != null) {
      currentUnit = nextUnit;
      nextUnit = unitIt.hasNext() ? (Unit) unitIt.next() : null;

      List successors = new ArrayList();

      if (currentUnit.fallsThrough()) {
        // Add the next unit as the successor
        if (nextUnit != null) {
          successors.add(nextUnit);
          ((List) unitToPreds.get(nextUnit)).add(currentUnit);
        }
      }

      if (currentUnit.branches()) {
        for (Iterator targetIt = currentUnit.getUnitBoxes().iterator(); targetIt.hasNext(); ) {
          Unit target = ((UnitBox) targetIt.next()).getUnit();
          // Arbitrary bytecode can branch to the same
          // target it falls through to, so we screen for duplicates:
          if (!successors.contains(target)) {
            successors.add(target);
            ((List) unitToPreds.get(target)).add(currentUnit);
          }
        }
      }

      // Store away successors
      unitToSuccs.put(currentUnit, successors);
    }
  }
Exemple #8
0
  public void outADeclaration(ADeclaration node) {
    List localNameList = (List) mProductions.removeLast();
    Type type = (Type) mProductions.removeLast();
    Iterator it = localNameList.iterator();
    List localList = new ArrayList();

    while (it.hasNext()) {
      Local l = Jimple.v().newLocal((String) it.next(), type);
      mLocals.put(l.getName(), l);
      localList.add(l);
    }
    mProductions.addLast(localList);
  }
  /**
   * Computes the analysis given a UnitGraph computed from a method body. It is recommended that a
   * ExceptionalUnitGraph (or similar) be provided for correct results in the case of exceptional
   * control flow.
   *
   * @param g a graph on which to compute the analysis.
   * @see ExceptionalUnitGraph
   */
  public SimpleLiveLocals(UnitGraph graph) {
    if (Options.v().time()) Timers.v().liveTimer.start();

    if (Options.v().verbose())
      G.v()
          .out
          .println(
              "["
                  + graph.getBody().getMethod().getName()
                  + "]     Constructing SimpleLiveLocals...");

    SimpleLiveLocalsAnalysis analysis = new SimpleLiveLocalsAnalysis(graph);

    if (Options.v().time()) Timers.v().livePostTimer.start();

    // Build unitToLocals map
    {
      unitToLocalsAfter = new HashMap<Unit, List>(graph.size() * 2 + 1, 0.7f);
      unitToLocalsBefore = new HashMap<Unit, List>(graph.size() * 2 + 1, 0.7f);

      Iterator unitIt = graph.iterator();

      while (unitIt.hasNext()) {
        Unit s = (Unit) unitIt.next();

        FlowSet set = (FlowSet) analysis.getFlowBefore(s);
        unitToLocalsBefore.put(s, Collections.unmodifiableList(set.toList()));

        set = (FlowSet) analysis.getFlowAfter(s);
        unitToLocalsAfter.put(s, Collections.unmodifiableList(set.toList()));
      }
    }

    if (Options.v().time()) Timers.v().livePostTimer.end();

    if (Options.v().time()) Timers.v().liveTimer.end();
  }
Exemple #10
0
 /**
  * Returns a <code>ThrowableSet</code> which contains all the exceptions in <code>s</code> in
  * addition to those in this <code>ThrowableSet</code>.
  *
  * @param s set of exceptions to add to this set.
  * @return the union of this set with <code>s</code>
  * @throws ThrowableSet.AlreadyHasExclusionsException if this <code>ThrowableSet</code> or <code>s
  *     </code> is the result of a {@link #whichCatchableAs(RefType)} operation, so that it is not
  *     possible to represent the addition of <code>s</code> to this <code>ThrowableSet</code>.
  */
 public ThrowableSet add(ThrowableSet s) throws ThrowableSet.AlreadyHasExclusionsException {
   if (INSTRUMENTING) {
     Manager.v().addsOfSet++;
   }
   if (exceptionsExcluded.size() > 0 || s.exceptionsExcluded.size() > 0) {
     throw new AlreadyHasExclusionsException(
         "ThrowableSet.Add(ThrowableSet): attempt to add to ["
             + this.toString()
             + "] after removals recorded.");
   }
   ThrowableSet result = getMemoizedAdds(s);
   if (result == null) {
     if (INSTRUMENTING) {
       Manager.v().addsInclusionFromSearch++;
       Manager.v().addsExclusionWithoutSearch++;
     }
     result = this.add(s.exceptionsIncluded);
     memoizedAdds.put(s, result);
   } else if (INSTRUMENTING) {
     Manager.v().addsInclusionFromMemo++;
     Manager.v().addsExclusionWithoutSearch++;
   }
   return result;
 }
Exemple #11
0
  /**
   * Returns a <code>ThrowableSet</code> which contains <code>e</code> and all of its subclasses as
   * well as the exceptions in this set.
   *
   * <p><code>e</code> should be an instance of {@link AnySubType} if you know that the compile-time
   * type of the exception you are representing is <code>e</code>, but the exception may be
   * instantiated at run-time by a subclass of <code>e</code>.
   *
   * <p>For example, if you were recording the type of the exception thrown by
   *
   * <pre>
   * catch (IOException e) {
   *    throw e;
   * }
   * </pre>
   *
   * you would call
   *
   * <pre>
   * <code>add(AnySubtype.v(Scene.v().getRefType("java.lang.Exception.IOException")))</code>
   * </pre>
   *
   * since the handler might rethrow any subclass of <code>IOException</code>.
   *
   * @param e represents a subtree of the exception class hierarchy to add to this set.
   * @return a set containing <code>e</code> and all its subclasses, as well as the exceptions
   *     represented by this set.
   * @throws ThrowableSet.AlreadyHasExclusionsException if this <code>ThrowableSet</code> is the
   *     result of a {@link #whichCatchableAs(RefType)} operation and, thus, unable to represent the
   *     addition of <code>e</code>.
   */
  public ThrowableSet add(AnySubType e) throws ThrowableSet.AlreadyHasExclusionsException {
    if (INSTRUMENTING) {
      Manager.v().addsOfAnySubType++;
    }

    ThrowableSet result = getMemoizedAdds(e);
    if (result != null) {
      if (INSTRUMENTING) {
        Manager.v().addsInclusionFromMemo++;
        Manager.v().addsExclusionWithoutSearch++;
      }
      return result;
    } else {
      FastHierarchy hierarchy = Scene.v().getOrMakeFastHierarchy();
      RefType newBase = e.getBase();

      if (INSTRUMENTING) {
        if (exceptionsExcluded.size() != 0) {
          Manager.v().addsExclusionWithSearch++;
        } else {
          Manager.v().addsExclusionWithoutSearch++;
        }
      }
      for (Iterator i = exceptionsExcluded.iterator(); i.hasNext(); ) {
        RefType exclusionBase = ((AnySubType) i.next()).getBase();
        if (hierarchy.canStoreType(newBase, exclusionBase)
            || hierarchy.canStoreType(exclusionBase, newBase)) {
          if (INSTRUMENTING) {
            // To ensure that the subcategories total properly:
            Manager.v().addsInclusionInterrupted++;
          }
          throw new AlreadyHasExclusionsException(
              "ThrowableSet.add("
                  + e.toString()
                  + ") to the set [ "
                  + this.toString()
                  + "] where "
                  + exclusionBase.toString()
                  + " is excluded.");
        }
      }

      if (this.exceptionsIncluded.contains(e)) {
        if (INSTRUMENTING) {
          Manager.v().addsInclusionFromMap++;
        }
        return this;

      } else {
        if (INSTRUMENTING) {
          Manager.v().addsInclusionFromSearch++;
        }

        int changes = 0;
        boolean addNewException = true;
        Set resultSet = new HashSet();

        for (Iterator i = this.exceptionsIncluded.iterator(); i.hasNext(); ) {
          RefLikeType incumbent = (RefLikeType) i.next();
          if (incumbent instanceof RefType) {
            if (hierarchy.canStoreType(incumbent, newBase)) {
              // Omit incumbent from result.
              changes++;
            } else {
              resultSet.add(incumbent);
            }
          } else if (incumbent instanceof AnySubType) {
            RefType incumbentBase = ((AnySubType) incumbent).getBase();
            // We have to use the base types in these hierarchy calls
            // because we want to know if _all_ possible
            // types represented by e can be represented by
            // the incumbent, or vice versa.
            if (hierarchy.canStoreType(newBase, incumbentBase)) {
              addNewException = false;
              resultSet.add(incumbent);
            } else if (hierarchy.canStoreType(incumbentBase, newBase)) {
              // Omit incumbent from result;
              changes++;
            } else {
              resultSet.add(incumbent);
            }
          } else { // assertion failure.
            throw new IllegalStateException(
                "ThrowableSet.add(AnySubType): Set element "
                    + incumbent.toString()
                    + " is neither a RefType nor an AnySubType.");
          }
        }
        if (addNewException) {
          resultSet.add(e);
          changes++;
        }
        if (changes > 0) {
          result = Manager.v().registerSetIfNew(resultSet, this.exceptionsExcluded);
        } else {
          result = this;
        }
        memoizedAdds.put(e, result);
        return result;
      }
    }
  }
Exemple #12
0
  /**
   * Returns a <code>ThrowableSet</code> which contains <code>e</code> in addition to the exceptions
   * in this <code>ThrowableSet</code>.
   *
   * <p>Add <code>e</code> as a {@link RefType} when you know that the run-time class of the
   * exception you are representing is necessarily <code>e</code> and cannot be a subclass of <code>
   * e</code>.
   *
   * <p>For example, if you were recording the type of the exception thrown by
   *
   * <pre>
   * throw new IOException("Permission denied");
   * </pre>
   *
   * you would call
   *
   * <pre>
   * <code>add(Scene.v().getRefType("java.lang.Exception.IOException"))</code>
   * </pre>
   *
   * since the class of the exception is necessarily <code>IOException</code>.
   *
   * @param e the exception class
   * @return a set containing <code>e</code> as well as the exceptions in this set.
   * @throws {@link ThrowableSet.IllegalStateException} if this <code>ThrowableSet</code> is the
   *     result of a {@link #whichCatchableAs(RefType)} operation and, thus, unable to represent the
   *     addition of <code>e</code>.
   */
  public ThrowableSet add(RefType e) throws ThrowableSet.AlreadyHasExclusionsException {
    if (INSTRUMENTING) {
      Manager.v().addsOfRefType++;
    }
    if (this.exceptionsIncluded.contains(e)) {
      if (INSTRUMENTING) {
        Manager.v().addsInclusionFromMap++;
        Manager.v().addsExclusionWithoutSearch++;
      }
      return this;
    } else {
      ThrowableSet result = getMemoizedAdds(e);
      if (result != null) {
        if (INSTRUMENTING) {
          Manager.v().addsInclusionFromMemo++;
          Manager.v().addsExclusionWithoutSearch++;
        }
        return result;
      } else {
        if (INSTRUMENTING) {
          Manager.v().addsInclusionFromSearch++;
          if (exceptionsExcluded.size() != 0) {
            Manager.v().addsExclusionWithSearch++;
          } else {
            Manager.v().addsExclusionWithoutSearch++;
          }
        }
        FastHierarchy hierarchy = Scene.v().getOrMakeFastHierarchy();

        for (Iterator i = exceptionsExcluded.iterator(); i.hasNext(); ) {
          RefType exclusionBase = ((AnySubType) i.next()).getBase();
          if (hierarchy.canStoreType(e, exclusionBase)) {
            throw new AlreadyHasExclusionsException(
                "ThrowableSet.add(RefType): adding"
                    + e.toString()
                    + " to the set [ "
                    + this.toString()
                    + "] where "
                    + exclusionBase.toString()
                    + " is excluded.");
          }
        }

        for (Iterator i = exceptionsIncluded.iterator(); i.hasNext(); ) {
          RefLikeType incumbent = (RefLikeType) i.next();
          if (incumbent instanceof AnySubType) {
            // Need to use incumbent.getBase() because
            // hierarchy.canStoreType() assumes that parent
            // is not an AnySubType.
            RefType incumbentBase = ((AnySubType) incumbent).getBase();
            if (hierarchy.canStoreType(e, incumbentBase)) {
              memoizedAdds.put(e, this);
              return this;
            }
          } else if (!(incumbent instanceof RefType)) {
            // assertion failure.
            throw new IllegalStateException(
                "ThrowableSet.add(RefType): Set element "
                    + incumbent.toString()
                    + " is neither a RefType nor an AnySubType.");
          }
        }
        Set resultSet = new HashSet(this.exceptionsIncluded);
        resultSet.add(e);
        result = Manager.v().registerSetIfNew(resultSet, this.exceptionsExcluded);
        memoizedAdds.put(e, result);
        return result;
      }
    }
  }
  SimpleLiveLocalsAnalysis(UnitGraph g) {
    super(g);

    if (Options.v().time()) Timers.v().liveSetupTimer.start();

    emptySet = new ArraySparseSet();

    // Create kill sets.
    {
      unitToKillSet = new HashMap<Unit, FlowSet>(g.size() * 2 + 1, 0.7f);

      Iterator unitIt = g.iterator();

      while (unitIt.hasNext()) {
        Unit s = (Unit) unitIt.next();

        FlowSet killSet = emptySet.clone();

        Iterator boxIt = s.getDefBoxes().iterator();

        while (boxIt.hasNext()) {
          ValueBox box = (ValueBox) boxIt.next();

          if (box.getValue() instanceof Local) killSet.add(box.getValue(), killSet);
        }

        unitToKillSet.put(s, killSet);
      }
    }

    // Create generate sets
    {
      unitToGenerateSet = new HashMap<Unit, FlowSet>(g.size() * 2 + 1, 0.7f);

      Iterator unitIt = g.iterator();

      while (unitIt.hasNext()) {
        Unit s = (Unit) unitIt.next();

        FlowSet genSet = emptySet.clone();

        Iterator boxIt = s.getUseBoxes().iterator();

        while (boxIt.hasNext()) {
          ValueBox box = (ValueBox) boxIt.next();

          if (box.getValue() instanceof Local) genSet.add(box.getValue(), genSet);
        }

        unitToGenerateSet.put(s, genSet);
      }
    }

    if (Options.v().time()) Timers.v().liveSetupTimer.end();

    if (Options.v().time()) Timers.v().liveAnalysisTimer.start();

    doAnalysis();

    if (Options.v().time()) Timers.v().liveAnalysisTimer.end();
  }
Exemple #14
0
  public void outAFullMethodBody(AFullMethodBody node) {
    Object catchClause = null;
    JimpleBody jBody = Jimple.v().newBody();

    if (node.getCatchClause() != null) {
      int size = node.getCatchClause().size();
      for (int i = 0; i < size; i++) jBody.getTraps().addFirst((Trap) mProductions.removeLast());
    }

    if (node.getStatement() != null) {
      int size = node.getStatement().size();
      Unit lastStmt = null;
      for (int i = 0; i < size; i++) {
        Object o = mProductions.removeLast();
        if (o instanceof Unit) {
          jBody.getUnits().addFirst(o);
          lastStmt = (Unit) o;
        } else if (o instanceof String) {
          if (lastStmt == null) throw new RuntimeException("impossible");
          mLabelToStmtMap.put(o, lastStmt);
        } else throw new RuntimeException("impossible");
      }
    }

    if (node.getDeclaration() != null) {
      int size = node.getDeclaration().size();
      for (int i = 0; i < size; i++) {
        List localList = (List) mProductions.removeLast();

        int listSize = localList.size();
        for (int j = listSize - 1; j >= 0; j--) jBody.getLocals().addFirst(localList.get(j));
      }
    }

    Iterator it = mLabelToPatchList.keySet().iterator();
    while (it.hasNext()) {
      String label = (String) it.next();
      Unit target = (Unit) mLabelToStmtMap.get(label);

      Iterator patchIt = ((List) mLabelToPatchList.get(label)).iterator();
      while (patchIt.hasNext()) {
        UnitBox box = (UnitBox) patchIt.next();
        box.setUnit(target);
      }
    }

    /*
    Iterator it = mLabelToStmtMap.keySet().iterator();
    while(it.hasNext()) {
        String label = (String) it.next();
        Unit target = (Unit) mLabelToStmtMap.get(label);

        List l =         (List) mLabelToPatchList.get(label);
        if(l != null) {
            Iterator patchIt = l.iterator();
            while(patchIt.hasNext()) {
                UnitBox box = (UnitBox) patchIt.next();
                box.setUnit(target);
            }
        }
    }
    */

    mProductions.addLast(jBody);
  }
Exemple #15
0
  void handleClassAnnotation(ClassDef classDef) {
    Set<? extends Annotation> aSet = classDef.getAnnotations();
    if (aSet == null || aSet.isEmpty()) return;

    List<Tag> tags = handleAnnotation(aSet, classDef.getType());
    if (tags == null) return;

    InnerClassAttribute ica = null;
    for (Tag t : tags)
      if (t != null) {
        if (t instanceof InnerClassTag) {
          if (ica == null) {
            // Do we already have an InnerClassAttribute?
            ica = (InnerClassAttribute) clazz.getTag("InnerClassAttribute");
            // If not, create one
            if (ica == null) {
              ica = new InnerClassAttribute();
              clazz.addTag(ica);
            }
          }
          ica.add((InnerClassTag) t);
        } else if (t instanceof VisibilityAnnotationTag) {
          // If a dalvik/annotation/AnnotationDefault tag is present
          // in a class, its AnnotationElements must be propagated
          // to methods through the creation of new AnnotationDefaultTag.
          VisibilityAnnotationTag vt = (VisibilityAnnotationTag) t;
          for (AnnotationTag a : vt.getAnnotations()) {
            if (a.getType().equals("Ldalvik/annotation/AnnotationDefault;")) {
              for (AnnotationElem ae : a.getElems()) {
                if (ae instanceof AnnotationAnnotationElem) {
                  AnnotationAnnotationElem aae = (AnnotationAnnotationElem) ae;
                  AnnotationTag at = aae.getValue();
                  // extract default elements
                  Map<String, AnnotationElem> defaults = new HashMap<String, AnnotationElem>();
                  for (AnnotationElem aelem : at.getElems()) {
                    defaults.put(aelem.getName(), aelem);
                  }
                  // create default tags containing default elements
                  // and add tags on methods
                  for (SootMethod sm : clazz.getMethods()) {
                    String methodName = sm.getName();
                    if (defaults.containsKey(methodName)) {
                      AnnotationElem e = defaults.get(methodName);

                      // Okay, the name is the same, but is it actually the same type?
                      Type annotationType = getSootType(e);
                      boolean isCorrectType = false;
                      if (annotationType == null) {
                        // we do not know the type of the annotation, so we guess it's the correct
                        // type.
                        isCorrectType = true;
                      } else {
                        if (annotationType.equals(sm.getReturnType())) {
                          isCorrectType = true;
                        } else if (annotationType.equals(ARRAY_TYPE)) {
                          if (sm.getReturnType() instanceof ArrayType) isCorrectType = true;
                        }
                      }

                      if (isCorrectType && sm.getParameterCount() == 0) {
                        e.setName("default");
                        AnnotationDefaultTag d = new AnnotationDefaultTag(e);
                        sm.addTag(d);

                        // In case there is more than one matching method, we only use the first one
                        defaults.remove(sm.getName());
                      }
                    }
                  }
                  for (Entry<String, AnnotationElem> leftOverEntry : defaults.entrySet()) {
                    // We were not able to find a matching method for the tag, because the return
                    // signature
                    // does not match
                    SootMethod found = clazz.getMethodByNameUnsafe(leftOverEntry.getKey());
                    AnnotationElem element = leftOverEntry.getValue();
                    if (found != null) {
                      element.setName("default");
                      AnnotationDefaultTag d = new AnnotationDefaultTag(element);
                      found.addTag(d);
                    }
                  }
                }
              }
            }
          }
          if (!(vt.getVisibility() == AnnotationConstants.RUNTIME_INVISIBLE)) clazz.addTag(vt);
        } else {
          clazz.addTag(t);
        }
        Debug.printDbg("add class annotation: ", t, " type: ", t.getClass());
      }
  }
  /**
   * Parse the command line arguments specific to CFGViewer, and convert them into phase options for
   * jtp.printcfg.
   *
   * @return an array of arguments to pass on to Soot.Main.main().
   */
  private String[] parse_options(String[] args) {
    List<String> sootArgs = new ArrayList<String>(args.length);

    for (int i = 0, n = args.length; i < n; i++) {
      if (args[i].equals("--alt-classpath") || args[i].equals("--alt-class-path")) {
        sootArgs.add("-p");
        sootArgs.add(phaseFullname);
        sootArgs.add(altClassPathOptionName + ':' + args[++i]);
      } else if (args[i].startsWith("--graph=")) {
        sootArgs.add("-p");
        sootArgs.add(phaseFullname);
        sootArgs.add(graphTypeOptionName + ':' + args[i].substring("--graph=".length()));
      } else if (args[i].startsWith("--ir=")) {
        sootArgs.add("-p");
        sootArgs.add(phaseFullname);
        sootArgs.add(irOptionName + ':' + args[i].substring("--ir=".length()));
      } else if (args[i].equals("--brief")) {
        sootArgs.add("-p");
        sootArgs.add(phaseFullname);
        sootArgs.add(briefLabelOptionName + ":true");
      } else if (args[i].equals("--multipages")) {
        sootArgs.add("-p");
        sootArgs.add(phaseFullname);
        sootArgs.add(multipageOptionName + ":true");
      } else if (args[i].equals("--help")) {
        return new String[0]; // This is a cheesy method to inveigle
        // our caller into printing the help
        // and exiting.
      } else if (args[i].equals("--soot-class-path")
          || args[i].equals("-soot-class-path")
          || args[i].equals("--soot-classpath")
          || args[i].equals("-soot-classpath")
          || args[i].equals("--process-dir")
          || args[i].equals("-process-dir")
          || args[i].equals("--android-jars")
          || args[i].equals("-android-jars")
          || args[i].equals("--force-android-jar")
          || args[i].equals("-force-android-jar")) {
        // Pass classpaths without treating ":" as a method specifier.
        sootArgs.add(args[i]);
        sootArgs.add(args[++i]);
      } else if (args[i].equals("-p")
          || args[i].equals("--phase-option")
          || args[i].equals("-phase-option")) {
        // Pass phase options without treating ":" as a method
        // specifier.
        sootArgs.add(args[i]);
        sootArgs.add(args[++i]);
        sootArgs.add(args[++i]);
      } else {
        int smpos = args[i].indexOf(':');
        if (smpos == -1) {
          sootArgs.add(args[i]);
        } else {
          String clsname = args[i].substring(0, smpos);
          sootArgs.add(clsname);
          String methname = args[i].substring(smpos + 1);
          if (methodsToPrint == null) {
            methodsToPrint = new HashMap<String, String>();
          }
          methodsToPrint.put(methname, clsname);
        }
      }
    }
    String[] sootArgsArray = new String[sootArgs.size()];
    return (String[]) sootArgs.toArray(sootArgsArray);
  }