protected int gradientUpdate(_Query query) { double diff; int i, trainSize = 0; // Step 1: calculate the ranking score for (_QUPair pair : query.m_docList) pair.score(m_weight); m_eval.eval(query); // Step 2: accumulate the lambdas for each URL for (_QUPair pair : query.m_docList) { diff = 0; if (pair.m_worseURLs != null) { for (_QUPair worseURL : pair.m_worseURLs) { // force to moving up diff += Utils.logistic(worseURL.m_score - pair.m_score) * m_eval.delta(pair, worseURL); trainSize++; } } if (pair.m_betterURLs != null) { for (_QUPair betterURL : pair.m_betterURLs) { // force to moving down diff -= Utils.logistic(pair.m_score - betterURL.m_score) * m_eval.delta(betterURL, pair); trainSize++; } } // Step 3: update weight according to this URL if (diff != 0) { for (i = 0; i < pair.m_rankFv.length; i++) m_g[i] -= diff * pair.m_rankFv[i]; } } return trainSize; }
protected void evaluate() { double r; m_obj = 0; m_perf = 0; m_misorder = 0; for (_Query query : m_queries) { // calculate ranking score with latest weight for (_QUPair pair : query.m_docList) pair.score(m_weight); if ((r = m_eval.eval(query)) >= 0) // ranking score should already be calculated m_perf += r; for (_QUPair pair : query.m_docList) { if (pair.m_worseURLs != null) { for (_QUPair worseURL : pair.m_worseURLs) { if ((r = Utils.logistic(pair.m_score - worseURL.m_score)) > 0) m_obj += Math.log(r); if (pair.m_score <= worseURL.m_score) m_misorder++; } } if (pair.m_betterURLs != null) { for (_QUPair betterURL : pair.m_betterURLs) { if ((r = Utils.logistic(betterURL.m_score - pair.m_score)) > 0) m_obj += Math.log(r); if (pair.m_score >= betterURL.m_score) m_misorder++; } } } } m_misorder /= 2; }
public LambdaRankWorker( int maxIter, int featureSize, int windowSize, double initStep, double shrinkage, double lambda, OptimizationType otype) { m_weight = new double[featureSize]; m_g = new double[featureSize]; m_queries = new ArrayList<_Query>(); m_step = initStep; m_maxIter = maxIter; m_windowSize = windowSize; m_shrinkage = shrinkage; m_lambda = lambda; if (otype.equals(OptimizationType.OT_MAP)) m_eval = new MAP_Evaluator(); else if (otype.equals(OptimizationType.OT_NDCG)) m_eval = new NDCG_Evaluator(LambdaRank.NDCG_K); else m_eval = new Evaluator(); m_eval.setRate(0.5); }