/** * Marks the hierarchy of implementing or overriding methods corresponding to the given method, if * any. */ protected void markMethodHierarchy(Clazz clazz, Method method) { int accessFlags = method.getAccessFlags(); if ((accessFlags & (ClassConstants.ACC_PRIVATE | ClassConstants.ACC_STATIC)) == 0 && !ClassUtil.isInitializer(method.getName(clazz))) { // We can skip private and static methods in the hierarchy, and // also abstract methods, unless they might widen a current // non-public access. int requiredUnsetAccessFlags = ClassConstants.ACC_PRIVATE | ClassConstants.ACC_STATIC | ((accessFlags & ClassConstants.ACC_PUBLIC) == 0 ? 0 : ClassConstants.ACC_ABSTRACT); clazz.accept( new ConcreteClassDownTraveler( new ClassHierarchyTraveler( true, true, false, true, new NamedMethodVisitor( method.getName(clazz), method.getDescriptor(clazz), new MemberAccessFilter(0, requiredUnsetAccessFlags, this))))); } }
/** * Marks the hierarchy of implementing or overriding methods corresponding to the given method, if * any. */ protected void markMethodHierarchy(Clazz clazz, Method method) { int accessFlags = method.getAccessFlags(); if ((accessFlags & (ClassConstants.ACC_PRIVATE | ClassConstants.ACC_STATIC)) == 0 && !ClassUtil.isInitializer(method.getName(clazz))) { // We can skip private and static methods in the hierarchy, and // also abstract methods, unless they might widen a current // non-public access. int requiredUnsetAccessFlags = ClassConstants.ACC_PRIVATE | ClassConstants.ACC_STATIC | ((accessFlags & ClassConstants.ACC_PUBLIC) == 0 ? 0 : ClassConstants.ACC_ABSTRACT); // Mark default implementations in interfaces down the hierarchy. // TODO: This may be premature if there aren't any concrete implementing classes. clazz.accept( new ClassAccessFilter( ClassConstants.ACC_ABSTRACT, 0, new ClassHierarchyTraveler( false, false, false, true, new ProgramClassFilter( new ClassAccessFilter( ClassConstants.ACC_ABSTRACT, 0, new NamedMethodVisitor( method.getName(clazz), method.getDescriptor(clazz), new MemberAccessFilter( 0, requiredUnsetAccessFlags, defaultMethodUsageMarker))))))); // Mark other implementations. clazz.accept( new ConcreteClassDownTraveler( new ClassHierarchyTraveler( true, true, false, true, new NamedMethodVisitor( method.getName(clazz), method.getDescriptor(clazz), new MemberAccessFilter(0, requiredUnsetAccessFlags, this))))); } }
public Method findMethod(String name, String descriptor) { for (int index = 0; index < methods.length; index++) { Method method = methods[index]; if (method != null && (name == null || method.getName(this).equals(name)) && (descriptor == null || method.getDescriptor(this).equals(descriptor))) { return method; } } return null; }
/** * Marks the hierarchy of implementing or overriding methods corresponding to the given method, if * any. */ protected void markMethodHierarchy(Clazz clazz, Method method) { if ((method.getAccessFlags() & (ClassConstants.INTERNAL_ACC_PRIVATE | ClassConstants.INTERNAL_ACC_STATIC)) == 0) { clazz.accept( new ConcreteClassDownTraveler( new ClassHierarchyTraveler( true, true, false, true, new NamedMethodVisitor( method.getName(clazz), method.getDescriptor(clazz), new MemberAccessFilter( 0, ClassConstants.INTERNAL_ACC_PRIVATE | ClassConstants.INTERNAL_ACC_STATIC | ClassConstants.INTERNAL_ACC_ABSTRACT, this))))); } }
public void visitCodeAttribute(Clazz clazz, Method method, CodeAttribute codeAttribute) { // DEBUG = // clazz.getName().equals("abc/Def") && // method.getName(clazz).equals("abc"); if (DEBUG) { method.accept(clazz, new ClassPrinter()); } branchTargetFinder.visitCodeAttribute(clazz, method, codeAttribute); // Don't bother if there aren't any subroutines anyway. if (!containsSubroutines(codeAttribute)) { return; } if (DEBUG) { System.out.println( "SubroutineInliner: processing [" + clazz.getName() + "." + method.getName(clazz) + method.getDescriptor(clazz) + "]"); } // Append the body of the code. codeAttributeComposer.reset(); codeAttributeComposer.beginCodeFragment(codeAttribute.u4codeLength); // Copy the non-subroutine instructions. int offset = 0; while (offset < codeAttribute.u4codeLength) { Instruction instruction = InstructionFactory.create(codeAttribute.code, offset); int instructionLength = instruction.length(offset); // Is this returning subroutine? if (branchTargetFinder.isSubroutine(offset) && branchTargetFinder.isSubroutineReturning(offset)) { // Skip the subroutine. if (DEBUG) { System.out.println( " Skipping original subroutine instruction " + instruction.toString(offset)); } // Append a label at this offset instead. codeAttributeComposer.appendLabel(offset); } else { // Copy the instruction, inlining any subroutine call recursively. instruction.accept(clazz, method, codeAttribute, offset, this); } offset += instructionLength; } // Copy the exceptions. Note that exceptions with empty try blocks // are automatically removed. codeAttribute.exceptionsAccept(clazz, method, subroutineExceptionInliner); if (DEBUG) { System.out.println(" Appending label after code at [" + offset + "]"); } // Append a label just after the code. codeAttributeComposer.appendLabel(codeAttribute.u4codeLength); // End and update the code attribute. codeAttributeComposer.endCodeFragment(); codeAttributeComposer.visitCodeAttribute(clazz, method, codeAttribute); if (DEBUG) { method.accept(clazz, new ClassPrinter()); } }