/** * If a entry trigger is combined with a guard condition then the entry action is executed * conditionally with this trigger. */ @Test public void testExitActionWithoutGuard() { Statechart sc = _createStatechart("test"); Scope scope = _createInterfaceScope("interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, scope); Region r = _createRegion("main", sc); Entry e = _createEntry(EntryKind.INITIAL, null, r); State s1 = _createState("s1", r); State s2 = _createState("s2", r); _createTransition(e, s1); _createTransition(s1, s2); LocalReaction exitAction = _createExitAction(s2); _createVariableAssignment( v1, AssignmentOperator.ASSIGN, _createValue(42), (ReactionEffect) exitAction.getEffect()); // ((ReactionTrigger)entryAction.getTrigger()).setGuardExpression(_createValue(true)); ExecutionFlow flow = sequencer.transform(sc); ExecutionState _s1 = flow.getStates().get(0); ExecutionState _s2 = flow.getStates().get(1); assertEquals(s1.getName(), _s1.getSimpleName()); assertEquals(s2.getName(), _s2.getSimpleName()); Sequence _exitSeq = (Sequence) _s2.getExitAction(); assertClass(Sequence.class, _exitSeq.getSteps().get(0)); assertAssignment( ((Sequence) _exitSeq.getSteps().get(0)).getSteps().get(0), "v1", AssignmentOperator.ASSIGN, "42"); }
/** The exit action must be part of the reaction effect sequence */ @SuppressWarnings("unused") @Test public void testStateReaction_WithEntryAction() { SimpleFlatTSC tsc = new SimpleFlatTSC(); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, tsc.s_scope); LocalReaction entryAction = _createEntryAction(tsc.s2); AssignmentExpression assign = _createVariableAssignment( v1, AssignmentOperator.ASSIGN, _createValue(21), (ReactionEffect) entryAction.getEffect()); ExecutionFlow flow = sequencer.transform(tsc.sc); // test state with one outgoing transition ExecutionState _s1 = flow.getStates().get(0); ExecutionState _s2 = flow.getStates().get(1); assertEquals(tsc.s1.getName(), _s1.getSimpleName()); assertEquals(tsc.s2.getName(), _s2.getSimpleName()); assertEquals(1, _s1.getReactions().size()); Reaction reaction = _s1.getReactions().get(0); assertNotNull(reaction.getCheck()); assertNotNull(reaction.getEffect()); Sequence seq = (Sequence) reaction.getEffect(); assertEquals(2, seq.getSteps().size()); assertCall(seq, 0, _s1.getExitSequence()); assertCall(seq, 1, _s2.getEnterSequences().get(0)); assertCall(_s2.getEnterSequences().get(0), 0, _s2.getEntryAction()); }
/** Local reactions must be created for behavior with 'always' trigger */ @Test public void testAlwaysLocalReaction() { Statechart sc = _createStatechart("test"); Scope scope = _createInterfaceScope("interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, scope); Region r = _createRegion("main", sc); State s = _createState("s", r); LocalReaction timeTriggeredReaction = _createLocalReaction(s, StextFactory.eINSTANCE.createAlwaysEvent()); AssignmentExpression assign = _createVariableAssignment( v1, AssignmentOperator.ASSIGN, _createValue(42), (ReactionEffect) timeTriggeredReaction.getEffect()); ExecutionFlow flow = sequencer.transform(sc); ExecutionState _s = flow.getStates().get(0); // assert that a local reaction is created Reaction reaction = _s.getReactions().get(0); PrimitiveValueExpression pve = (PrimitiveValueExpression) reaction.getCheck().getCondition(); assertBoolLiteral(true, pve.getValue()); }
protected Object _execute(final ExitState exitState) { Object _xblockexpression = null; { ExecutionState[] _stateConfiguration = this.executionContext.getStateConfiguration(); ExecutionState _state = exitState.getState(); StateVector _stateVector = _state.getStateVector(); int _offset = _stateVector.getOffset(); ((List<ExecutionState>) Conversions.doWrapArray(_stateConfiguration)).set(_offset, null); _xblockexpression = (null); } return _xblockexpression; }
/** * A leaf state must have a enter sequence. This enter sequence consists of an entry action call * and a state enter step. */ @SuppressWarnings("unused") @Test public void testLeafStateEnterSequence() { Statechart sc = _createStatechart("cs"); Scope scope = _createInterfaceScope("interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, scope); Region r = _createRegion("r", sc); State s1 = _createState("s1", r); LocalReaction entryAction = _createEntryAction(s1); _createVariableAssignment( v1, AssignmentOperator.ASSIGN, _createValue(42), (ReactionEffect) entryAction.getEffect()); Entry e = _createEntry(EntryKind.INITIAL, null, r); Transition t = _createTransition(e, s1); ExecutionFlow flow = sequencer.transform(sc); ExecutionState _s1 = flow.getStates().get(0); assertEquals(s1.getName(), _s1.getSimpleName()); assertNotNull(_s1.getEntryAction()); assertNotNull(_s1.getEnterSequences().get(0)); assertEquals(2, _s1.getEnterSequences().get(0).getSteps().size()); assertCall(_s1.getEnterSequences().get(0), 0, _s1.getEntryAction()); assertClass(EnterState.class, _s1.getEnterSequences().get(0).getSteps().get(1)); }
/** entry actions of a substate must not be included in a states entry action list */ @Test public void testSubStateEntryActionExclusion() { Statechart sc = _createStatechart("test"); Scope scope = _createInterfaceScope("interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, scope); Region r = _createRegion("main", sc); // Entry e = _createEntry(EntryKind.INITIAL, null, r); State s2 = _createState("s2", r); Region s2_r = _createRegion("sub", s2); State s2_1 = _createState("s2_1", s2_r); LocalReaction entryAction = _createEntryAction(s2_1); _createVariableAssignment( v1, AssignmentOperator.ASSIGN, _createValue(42), (ReactionEffect) entryAction.getEffect()); LocalReaction exitAction = _createExitAction(s2_1); _createVariableAssignment( v1, AssignmentOperator.ASSIGN, _createValue(43), (ReactionEffect) exitAction.getEffect()); ExecutionFlow flow = sequencer.transform(sc); ExecutionState _s2 = flow.getStates().get(0); ExecutionState _s2_1 = flow.getStates().get(1); assertEquals(s2.getName(), _s2.getSimpleName()); assertEquals(s2_1.getName(), _s2_1.getSimpleName()); assertNull(_s2.getEntryAction()); assertNotNull(_s2_1.getEntryAction()); assertNull(_s2.getExitAction()); assertNotNull(_s2_1.getExitAction()); }
/** The transition action must be part of the reaction effect sequence */ @Test public void testStateReaction_WithTransitionAction() { SimpleFlatTSC tsc = new SimpleFlatTSC(); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, tsc.s_scope); ReactionEffect effect = _createReactionEffect(tsc.t1); AssignmentExpression assign = _createVariableAssignment(v1, AssignmentOperator.ASSIGN, _createValue(42), effect); ExecutionFlow flow = sequencer.transform(tsc.sc); // test state with one outgoing transition ExecutionState s1 = flow.getStates().get(0); ExecutionState s2 = flow.getStates().get(1); assertEquals(tsc.s1.getName(), s1.getSimpleName()); assertEquals(tsc.s2.getName(), s2.getSimpleName()); assertEquals(1, s1.getReactions().size()); Reaction reaction = s1.getReactions().get(0); assertNotNull(reaction.getCheck()); assertNotNull(reaction.getEffect()); Sequence seq = (Sequence) reaction.getEffect(); assertCall(seq, 0, s1.getExitSequence()); assertClass(Sequence.class, seq.getSteps().get(1)); Execution _exec = (Execution) ((Sequence) seq.getSteps().get(1)).getSteps().get(0); AssignmentExpression _assign = (AssignmentExpression) _exec.getStatement(); assertNotSame(_assign, assign); assertNotSame(_assign.getVarRef(), assign.getVarRef()); assertNotSame(_assign.getVarRef(), v1); assertCall(seq, 2, s2.getEnterSequences().get(0)); }
/** The enter sequence must be called withnin incoming transitions. */ @SuppressWarnings("unused") @Test public void testFinalStateEnterSequenceCall() { Statechart sc = _createStatechart("sc"); { InterfaceScope s_scope = _createInterfaceScope("Interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, s_scope); EventDefinition e1 = _createEventDefinition("e1", s_scope); Region r = _createRegion("r", sc); { State s1 = _createState("s1", r); FinalState fs = _createFinalState(r); Transition t_s1_fs = _createTransition(s1, fs); _createReactionTrigger(t_s1_fs); _createRegularEventSpec(e1, (ReactionTrigger) t_s1_fs.getTrigger()); } } ExecutionFlow flow = sequencer.transform(sc); ExecutionState _s1 = flow.getStates().get(0); assertEquals("sc.r.s1", _s1.getName()); ExecutionState _fs = flow.getStates().get(1); assertEquals("sc.r._final_", _fs.getName()); assertNull(_fs.getEntryAction()); assertNull(_fs.getExitAction()); // the transition s1 -> fs must includes the fs exit sequence call Sequence cycle = _s1.getReactSequence(); If _if = (If) SCTTestUtil.flattenSequenceStepsAsList(cycle).get(0); assertCall(_if.getThenStep(), _s1.getReactions().get(0).getEffect()); Sequence _seq = (Sequence) _s1.getReactions().get(0).getEffect(); assertCall(_seq, 1, _fs.getEnterSequences().get(0)); }
@Test public void testSingleLocalTimeTrigger() { Statechart sc = _createStatechart("test"); Scope scope = _createInterfaceScope("interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, scope); Region r = _createRegion("main", sc); State s = _createState("s", r); LocalReaction timeTriggeredReaction = _createTimeTriggeredReaction(s, TimeEventType.AFTER, _createValue(2), TimeUnit.MILLISECOND); AssignmentExpression assign = _createVariableAssignment( v1, AssignmentOperator.ASSIGN, _createValue(42), (ReactionEffect) timeTriggeredReaction.getEffect()); ExecutionFlow flow = sequencer.transform(sc); Scope timerScope = flow.getScopes().get(1); assertTrue(timerScope.getDeclarations().get(0) instanceof TimeEvent); TimeEvent te = (TimeEvent) timerScope.getDeclarations().get(0); // assert that the reaction check checks the time event ExecutionState _s = flow.getStates().get(0); // assert the scheduling of the time event during state entry assertNotNull(_s.getEntryAction()); Sequence entryAction = (Sequence) _s.getEntryAction(); ScheduleTimeEvent ste = (ScheduleTimeEvent) entryAction.getSteps().get(0); assertSame(te, ste.getTimeEvent()); PrimitiveValueExpression value = (PrimitiveValueExpression) ste.getTimeValue(); assertIntLiteral(2, value.getValue()); assertNotNull(_s.getExitAction()); Sequence exitAction = (Sequence) _s.getExitAction(); UnscheduleTimeEvent ute = (UnscheduleTimeEvent) exitAction.getSteps().get(0); assertSame(te, ute.getTimeEvent()); }
public void runCycle() throws ExecutionException { { this.externalExecutionContext.flush(); this.nextSVIdx = 0; this.execute(this.brc); ExecutionState[] _stateConfiguration = this.executionContext.getStateConfiguration(); int _size = ((List<ExecutionState>) Conversions.doWrapArray(_stateConfiguration)).size(); boolean _operator_lessThan = ComparableExtensions.<Integer>operator_lessThan( ((Integer) this.nextSVIdx), ((Integer) _size)); Boolean _xwhileexpression = _operator_lessThan; while (_xwhileexpression) { { ExecutionState[] _stateConfiguration_1 = this.executionContext.getStateConfiguration(); ExecutionState _get = ((List<ExecutionState>) Conversions.doWrapArray(_stateConfiguration_1)) .get(this.nextSVIdx); ExecutionState state = _get; boolean _operator_notEquals = ObjectExtensions.operator_notEquals(state, null); if (_operator_notEquals) { Sequence _reactSequence = state.getReactSequence(); this.execute(_reactSequence); } int _operator_plus = IntegerExtensions.operator_plus(((Integer) this.nextSVIdx), ((Integer) 1)); this.nextSVIdx = _operator_plus; } ExecutionState[] _stateConfiguration_2 = this.executionContext.getStateConfiguration(); int _size_1 = ((List<ExecutionState>) Conversions.doWrapArray(_stateConfiguration_2)).size(); boolean _operator_lessThan_1 = ComparableExtensions.<Integer>operator_lessThan( ((Integer) this.nextSVIdx), ((Integer) _size_1)); _xwhileexpression = _operator_lessThan_1; } this.executionContext.resetRaisedEvents(); this.execute(this.erc); } }
/** Exit action behaviors are not directly part of the states cycle steps */ @SuppressWarnings("unused") @Test public void testStateCycle_ExitActionExclusion() { MinimalTSC tsc = new MinimalTSC(); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, tsc.s_scope); // add a simple entry action: "entry / x=42;" LocalReaction lr = _createExitAction(tsc.s1); ReactionEffect lr_eff = _createReactionEffect(lr); AssignmentExpression assign1 = _createVariableAssignment(v1, AssignmentOperator.ASSIGN, _createValue(42), lr_eff); // TRANSFORM ExecutionFlow flow = sequencer.transform(tsc.sc); // test state with one outgoing transition ExecutionState s1 = flow.getStates().get(0); assertEquals(0, s1.getReactions().size()); assertNotNull(s1.getReactSequence()); assertEquals(1, s1.getReactSequence().getSteps().size()); }
/** * If a time trigger is defined for a transition then an event must be introduced into the * execution flow. */ @Test public void testSingleTransitionTimeTrigger() { Statechart sc = _createStatechart("test"); Scope scope = _createInterfaceScope("interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, scope); Region r = _createRegion("main", sc); State s = _createState("s", r); Transition t = _createTransition(s, s); ReactionTrigger tr1 = _createReactionTrigger(t); _createTimeEventSpec(TimeEventType.AFTER, _createValue(1), TimeUnit.SECOND, tr1); AssignmentExpression assign = _createVariableAssignment( v1, AssignmentOperator.ASSIGN, _createValue(42), (ReactionEffect) t.getEffect()); ExecutionFlow flow = sequencer.transform(sc); // assert definition of time event Scope timerScope = flow.getScopes().get(1); assertTrue(timerScope.getDeclarations().get(0) instanceof TimeEvent); TimeEvent te = (TimeEvent) timerScope.getDeclarations().get(0); // assert that the reaction check checks the time event assertEquals(1, flow.getStates().size()); ExecutionState _s = flow.getStates().get(0); assertEquals(s.getName(), _s.getSimpleName()); If _if = (If) SCTTestUtil.flattenSequenceStepsAsList(flow.getStates().get(0).getReactSequence()) .get(0); ElementReferenceExpression _ere = (ElementReferenceExpression) _if.getCheck().getCondition(); assertSame(te, _ere.getReference()); // assert the scheduling of the time event during state entry assertNotNull(_s.getEntryAction()); Sequence entryAction = (Sequence) _s.getEntryAction(); ScheduleTimeEvent ste = (ScheduleTimeEvent) entryAction.getSteps().get(0); assertSame(te, ste.getTimeEvent()); NumericalMultiplyDivideExpression multiply = (NumericalMultiplyDivideExpression) ste.getTimeValue(); assertIntLiteral(1, ((PrimitiveValueExpression) multiply.getLeftOperand()).getValue()); assertIntLiteral(1000, ((PrimitiveValueExpression) multiply.getRightOperand()).getValue()); assertEquals(MultiplicativeOperator.MUL, multiply.getOperator()); // assert the unscheduling of the time events during state exit assertNotNull(_s.getExitAction()); Sequence exitAction = (Sequence) _s.getExitAction(); UnscheduleTimeEvent ute = (UnscheduleTimeEvent) exitAction.getSteps().get(0); assertSame(te, ute.getTimeEvent()); }
@Test public void testStateReaction_SimpleFlatTSC() { SimpleFlatTSC tsc = new SimpleFlatTSC(); ExecutionFlow flow = sequencer.transform(tsc.sc); // test state with one outgoing transition ExecutionState s1 = flow.getStates().get(0); ExecutionState s2 = flow.getStates().get(1); assertEquals(tsc.s1.getName(), s1.getSimpleName()); assertEquals(tsc.s2.getName(), s2.getSimpleName()); assertEquals(1, s1.getReactions().size()); Reaction reaction = s1.getReactions().get(0); assertNotNull(reaction.getCheck()); assertNotNull(reaction.getEffect()); Sequence seq = (Sequence) reaction.getEffect(); assertCall(seq, 0, s1.getExitSequence()); assertCall(seq, 1, s2.getEnterSequences().get(0)); }
/** * A leaf state must have a enter sequence. This enter sequence consists of an entry action call * and a state enter step. */ @SuppressWarnings("unused") @Test public void testFinalStateEnterSequence() { Statechart sc = _createStatechart("cs"); Scope scope = _createInterfaceScope("interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, scope); Region r = _createRegion("r", sc); FinalState fs = _createFinalState(r); ExecutionFlow flow = sequencer.transform(sc); ExecutionState _fs = flow.getStates().get(0); assertEquals("_final_0", _fs.getSimpleName()); assertSame(fs, _fs.getSourceElement()); assertNull(_fs.getEntryAction()); assertNotNull(_fs.getEnterSequences().get(0)); assertEquals(1, _fs.getEnterSequences().get(0).getSteps().size()); assertClass(EnterState.class, _fs.getEnterSequences().get(0).getSteps().get(0)); }
/** A final state must have a exit sequence. This exit sequence consists of a state exit step. */ @SuppressWarnings("unused") @Test public void testFinalStateExitSequence() { Statechart sc = _createStatechart("cs"); Scope scope = _createInterfaceScope("interface", sc); Region r = _createRegion("r", sc); FinalState fs = _createFinalState(r); ExecutionFlow flow = sequencer.transform(sc); ExecutionState _fs = flow.getStates().get(0); assertEquals("_final_0", _fs.getSimpleName()); assertNull(_fs.getExitAction()); assertNotNull(_fs.getExitSequence()); assertEquals(1, _fs.getExitSequence().getSteps().size()); assertClass(ExitState.class, _fs.getExitSequence().getSteps().get(0)); }
/** * Local reactions that define regular and entry triggers side by side must also be part of the * cycle steps. */ @SuppressWarnings("unused") @Test public void testStateCycle_LocalReactionWithMixedRegularAndEntryTrigger() { MinimalTSC tsc = new MinimalTSC(); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, tsc.s_scope); // add a simple entry action: "entry / x=42;" LocalReaction lr = _createEntryAction(tsc.s1); _createRegularEventSpec(tsc.e1, (ReactionTrigger) lr.getTrigger()); ReactionEffect lr_eff = _createReactionEffect(lr); AssignmentExpression assign1 = _createVariableAssignment(v1, AssignmentOperator.ASSIGN, _createValue(42), lr_eff); // TRANSFORM ExecutionFlow flow = sequencer.transform(tsc.sc); // test state with one outgoing transition ExecutionState s1 = flow.getStates().get(0); assertEquals(1, s1.getReactions().size()); assertNotNull(s1.getReactSequence()); assertEquals(1, s1.getReactSequence().getSteps().size()); Sequence _seq = (Sequence) s1.getReactSequence().getSteps().get(0); If _lr1 = (If) assertedSequence(assertedSequence(_seq.getSteps().get(0)).getSteps().get(0)) .getSteps() .get(0); assertClass(ElementReferenceExpression.class, _lr1.getCheck().getCondition()); assertSame(s1.getReactions().get(0).getCheck().getCondition(), _lr1.getCheck().getCondition()); Call _lr1_eff_call = (Call) _lr1.getThenStep(); assertSame(s1.getReactions().get(0).getEffect(), _lr1_eff_call.getStep()); }
public ExecutionState getAssertedExState(ExecutionFlow flow, int offset, String name) { ExecutionState s = flow.getStates().get(offset); assertEquals(name, s.getName()); return s; }
/** * A composite state must have a enter sequence. This enter sequence consists of an entry action * call and a enter sequence call for each sub region. */ @Test public void testCompositeStateEnterSequence() { Statechart sc = _createStatechart("cs"); { Scope scope = _createInterfaceScope("interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, scope); Region r = _createRegion("r", sc); { State s1 = _createState("s1", r); { _createEntryAssignment(v1, s1, 1); Region r1_s1 = _createRegion("r1", s1); { Entry e = _createEntry(EntryKind.INITIAL, null, r1_s1); State s2 = _createState("s2", r1_s1); _createTransition(e, s2); } Region r2_s1 = _createRegion("r2", s1); { Entry e = _createEntry(EntryKind.INITIAL, null, r2_s1); State s3 = _createState("s3", r2_s1); _createTransition(e, s3); } } Entry e = _createEntry(EntryKind.INITIAL, null, r); _createTransition(e, s1); } } ExecutionFlow flow = sequencer.transform(sc); ExecutionState _s1 = flow.getStates().get(0); assertEquals("s1", _s1.getSimpleName()); ExecutionState _s2 = flow.getStates().get(1); assertEquals("s2", _s2.getSimpleName()); ExecutionState _s3 = flow.getStates().get(2); assertEquals("s3", _s3.getSimpleName()); assertNotNull(_s1.getEntryAction()); assertNotNull(_s1.getEnterSequences().get(0)); assertEquals(3, _s1.getEnterSequences().get(0).getSteps().size()); assertCall(_s1.getEnterSequences().get(0), 0, _s1.getEntryAction()); assertCall(_s1.getEnterSequences().get(0), 1, _s2.getSuperScope().getEnterSequences().get(0)); Sequence r1EntryReactSequence = flow.getNodes().get(0).getReactSequence(); assertCall(_s2.getSuperScope().getEnterSequences().get(0), 0, r1EntryReactSequence); assertCall( ((Sequence) r1EntryReactSequence.getSteps().get(0)), 0, _s2.getEnterSequences().get(0)); assertCall(_s1.getEnterSequences().get(0), 2, _s3.getSuperScope().getEnterSequences().get(0)); Sequence r2EntryReactSequence = flow.getNodes().get(1).getReactSequence(); assertCall(_s3.getSuperScope().getEnterSequences().get(0), 0, r2EntryReactSequence); assertCall( ((Sequence) r2EntryReactSequence.getSteps().get(0)), 0, _s3.getEnterSequences().get(0)); }
/** The state cycle must contain all reactions of parent states. */ @SuppressWarnings("unused") @Test public void testStateCycle_WithParent() { Statechart sc = _createStatechart("sc"); { InterfaceScope s_scope = _createInterfaceScope("Interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, s_scope); EventDefinition e1 = _createEventDefinition("e1", s_scope); Region r = _createRegion("r", sc); { State s1 = _createState("s1", r); { // a local reaction: "e1 / x=42;" LocalReaction lr1 = _createLocalReaction(s1, null); _createRegularEventSpec(e1, (ReactionTrigger) lr1.getTrigger()); ReactionEffect lr1_eff = _createReactionEffect(lr1); AssignmentExpression assign1 = _createVariableAssignment(v1, AssignmentOperator.ASSIGN, _createValue(42), lr1_eff); Region r_s1 = _createRegion("r", s1); { State s3 = _createState("s3", r_s1); { _createEntryAssignment(v1, s3, 2); Region r_s3 = _createRegion("r", s3); { State s4 = _createState("s4", r_s3); _createEntryAssignment(v1, s4, 3); State s5 = _createState("s5", r_s3); } } } } State s2 = _createState("s2", r); { Region r_s1 = _createRegion("r", s2); { _createState("s6", r_s1); } } } Transition t_s4_s5 = _createTransition(findState(sc, "s4"), findState(sc, "s5")); _createReactionTrigger(t_s4_s5); _createRegularEventSpec(e1, (ReactionTrigger) t_s4_s5.getTrigger()); Transition t_s3_s6 = _createTransition(findState(sc, "s3"), findState(sc, "s6")); _createReactionTrigger(t_s3_s6); _createRegularEventSpec(e1, (ReactionTrigger) t_s3_s6.getTrigger()); } ExecutionFlow flow = sequencer.transform(sc); ExecutionState _s1 = flow.getStates().get(0); assertEquals("sc.r.s1", _s1.getName()); ExecutionState _s3 = flow.getStates().get(1); assertEquals("sc.r.s1.r.s3", _s3.getName()); ExecutionState _s4 = flow.getStates().get(2); assertEquals("sc.r.s1.r.s3.r.s4", _s4.getName()); ExecutionState _s6 = flow.getStates().get(5); assertEquals("sc.r.s2.r.s6", _s6.getName()); Sequence cycle = _s4.getReactSequence(); Sequence _seq = (Sequence) cycle.getSteps().get(0); // first entry is the s1 local reaction List<Step> steps = SCTTestUtil.flattenSequenceStepsAsList(_seq); If _if = (If) steps.get(0); assertCall(_if.getThenStep(), _s1.getReactions().get(0).getEffect()); // second entry is the s3 cycle with the transition reaction _if = (If) steps.get(1); assertCall(_if.getThenStep(), _s3.getReactions().get(0).getEffect()); assertTrue(_s3.getReactions().get(0).isTransition()); // third is the s4 cycle with the transition reaction _seq = (Sequence) _if.getElseStep(); cycle = (Sequence) _seq.getSteps().get(0); _if = (If) cycle.getSteps().get(0); assertCall(_if.getThenStep(), _s4.getReactions().get(0).getEffect()); assertTrue(_s4.getReactions().get(0).isTransition()); assertNull(_if.getElseStep()); assertEquals(1, cycle.getSteps().size()); }
/** * The cycle sequence of a state that only consists of local reactions includes sequential * processing of the local reactions. */ @SuppressWarnings("unused") @Test public void testStateCycle_WithLocalReactionsOnly() { MinimalTSC tsc = new MinimalTSC(); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, tsc.s_scope); // the first local reaction conforms to "e1 / x=42;" LocalReaction lr1 = _createLocalReaction(tsc.s1, null); _createRegularEventSpec(tsc.e1, (ReactionTrigger) lr1.getTrigger()); ReactionEffect lr1_eff = _createReactionEffect(lr1); AssignmentExpression assign1 = _createVariableAssignment(v1, AssignmentOperator.ASSIGN, _createValue(42), lr1_eff); // the secont local reaction conforms to "e1 [x==42] / x=0;" LocalReaction lr2 = _createLocalReaction(tsc.s1, null); _createRegularEventSpec(tsc.e1, (ReactionTrigger) lr2.getTrigger()); LogicalRelationExpression lr2_equals = ExpressionsFactory.eINSTANCE.createLogicalRelationExpression(); lr2_equals.setOperator(RelationalOperator.EQUALS); ElementReferenceExpression lr2_varRef = ExpressionsFactory.eINSTANCE.createElementReferenceExpression(); lr2_varRef.setReference(v1); PrimitiveValueExpression lr2_value = _createValue(42); lr2_equals.setLeftOperand(lr2_varRef); lr2_equals.setRightOperand(lr2_value); ((ReactionTrigger) lr2.getTrigger()).setGuard(createGuardExpression(lr2_equals)); ReactionEffect lr2_eff = _createReactionEffect(lr2); AssignmentExpression assign2 = _createVariableAssignment(v1, AssignmentOperator.ASSIGN, _createValue(0), lr2_eff); // the third local reaction conforms to: "[x==0] / x=1;" LocalReaction lr3 = _createLocalReaction(tsc.s1, null); LogicalRelationExpression lr3_equals = ExpressionsFactory.eINSTANCE.createLogicalRelationExpression(); lr3_equals.setOperator(RelationalOperator.EQUALS); ElementReferenceExpression lr3_varRef = ExpressionsFactory.eINSTANCE.createElementReferenceExpression(); lr3_varRef.setReference(v1); PrimitiveValueExpression lr3_value = _createValue(0); lr3_equals.setLeftOperand(lr3_varRef); lr3_equals.setRightOperand(lr3_value); ((ReactionTrigger) lr3.getTrigger()).setGuard(createGuardExpression(lr3_equals)); ReactionEffect lr3_eff = _createReactionEffect(lr3); AssignmentExpression assign3 = _createVariableAssignment(v1, AssignmentOperator.ASSIGN, _createValue(1), lr3_eff); ExecutionFlow flow = sequencer.transform(tsc.sc); // test state with one outgoing transition ExecutionState s1 = flow.getStates().get(0); assertEquals(tsc.s1.getName(), s1.getSimpleName()); assertEquals(3, s1.getReactions().size()); assertNotNull(s1.getReactSequence()); Step step = s1.getReactSequence().getSteps().get(0); Sequence _seq = (Sequence) assertedSequence(assertedSequence(step).getSteps().get(0)).getSteps().get(0); assertEquals(3, _seq.getSteps().size()); // check first local reaction If _lr1 = (If) _seq.getSteps().get(0); assertClass(ElementReferenceExpression.class, _lr1.getCheck().getCondition()); assertSame(s1.getReactions().get(0).getCheck().getCondition(), _lr1.getCheck().getCondition()); Call _lr1_eff_call = (Call) _lr1.getThenStep(); assertSame(s1.getReactions().get(0).getEffect(), _lr1_eff_call.getStep()); // check second local reaction If _lr2 = (If) _seq.getSteps().get(1); assertClass(LogicalAndExpression.class, _lr2.getCheck().getCondition()); assertSame(s1.getReactions().get(1).getCheck().getCondition(), _lr2.getCheck().getCondition()); Call _lr2_eff_call = (Call) _lr2.getThenStep(); assertSame(s1.getReactions().get(1).getEffect(), _lr2_eff_call.getStep()); // check the third local reaction If _lr3 = (If) _seq.getSteps().get(2); assertClass(LogicalRelationExpression.class, _lr3.getCheck().getCondition()); assertSame(s1.getReactions().get(2).getCheck().getCondition(), _lr3.getCheck().getCondition()); Call _lr3_eff_call = (Call) _lr3.getThenStep(); assertSame(s1.getReactions().get(2).getEffect(), _lr3_eff_call.getStep()); }
@Test public void testStateCycle() { OrthogonalFlatTSC tsc = new OrthogonalFlatTSC(); ExecutionFlow flow = sequencer.transform(tsc.sc); // test state with one outgoing transition ExecutionState s1 = flow.getStates().get(0); ExecutionState s2 = flow.getStates().get(1); assertEquals(tsc.s1.getName(), s1.getSimpleName()); assertEquals(tsc.s2.getName(), s2.getSimpleName()); assertNotNull(s1.getReactSequence()); Step step = s1.getReactSequence().getSteps().get(0); If _if = (If) assertedSequence(assertedSequence(step).getSteps().get(0)).getSteps().get(0); assertNotNull(_if.getThenStep()); assertClass(Call.class, _if.getThenStep()); assertNull(_if.getElseStep()); Call seq = (Call) _if.getThenStep(); assertEquals(s1.getReactions().get(0).getEffect(), seq.getStep()); // assertTrue(seq.getSteps().get(0) instanceof ExitState); // assertEquals(s1, ((ExitState)seq.getSteps().get(0)).getState()); // assertTrue(seq.getSteps().get(1) instanceof EnterState); // assertEquals(s2, ((EnterState)seq.getSteps().get(1)).getState()); // // test state with two outgoing transitions ExecutionState s3 = flow.getStates().get(2); assertEquals(tsc.s3.getName(), s3.getSimpleName()); assertNotNull(s3.getReactSequence()); step = s3.getReactSequence().getSteps().get(0); _if = (If) step; assertNotNull(_if.getThenStep()); assertClass(Call.class, _if.getThenStep()); assertNotNull(_if.getElseStep()); assertClass(If.class, _if.getElseStep()); }
/** * A composite state must have a exit sequence. This exit sequence consists of an exit action call * and a state switch for all leaf states. */ @SuppressWarnings("unused") @Test public void testCompositeStateExitSequence() { Statechart sc = _createStatechart("cs"); { Scope scope = _createInterfaceScope("interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, scope); Region r = _createRegion("r", sc); { State s1 = _createState("s1", r); { _createExitAssignment(v1, s1, 1); Region r1_s1 = _createRegion("r1", s1); { Entry e = _createEntry(EntryKind.INITIAL, null, r1_s1); State s2 = _createState("s2", r1_s1); State s3 = _createState("s3", r1_s1); _createTransition(e, s2); _createTransition(s2, s3); } Region r2_s1 = _createRegion("r2", s1); { Entry e = _createEntry(EntryKind.INITIAL, null, r2_s1); State s4 = _createState("s4", r2_s1); State s5 = _createState("s5", r2_s1); State s6 = _createState("s6", r2_s1); _createTransition(e, s4); } } } } ExecutionFlow flow = sequencer.transform(sc); ExecutionState _s1 = flow.getStates().get(0); assertEquals("s1", _s1.getSimpleName()); ExecutionState _s2 = flow.getStates().get(1); assertEquals("s2", _s2.getSimpleName()); ExecutionState _s3 = flow.getStates().get(2); assertEquals("s3", _s3.getSimpleName()); ExecutionState _s4 = flow.getStates().get(3); assertEquals("s4", _s4.getSimpleName()); ExecutionState _s5 = flow.getStates().get(4); assertEquals("s5", _s5.getSimpleName()); ExecutionState _s6 = flow.getStates().get(5); assertEquals("s6", _s6.getSimpleName()); assertNotNull(_s1.getExitAction()); assertNotNull(_s1.getExitSequence()); assertEquals(3, _s1.getExitSequence().getSteps().size()); Sequence _r1_s1 = _s2.getSuperScope().getExitSequence(); assertCall(_s1.getExitSequence(), 0, _r1_s1); Sequence _r2_s1 = _s4.getSuperScope().getExitSequence(); assertCall(_s1.getExitSequence(), 1, _r2_s1); Step _switch = _r1_s1.getSteps().get(0); assertStateSwitch(_switch, _s2, _s3); assertCall( assertedSequence(assertedStateCase(_switch, _s2).getStep()), 0, _s2.getExitSequence()); assertCall( assertedSequence(assertedStateCase(_switch, _s3).getStep()), 0, _s3.getExitSequence()); _switch = _r2_s1.getSteps().get(0); assertStateSwitch(_switch, _s4, _s5, _s6); assertCall( assertedSequence(assertedStateCase(_switch, _s4).getStep()), 0, _s4.getExitSequence()); assertCall( assertedSequence(assertedStateCase(_switch, _s5).getStep()), 0, _s5.getExitSequence()); assertCall( assertedSequence(assertedStateCase(_switch, _s6).getStep()), 0, _s6.getExitSequence()); assertCall(_s1.getExitSequence(), 2, _s1.getExitAction()); }
/** * A composite state must have a exit sequence. This exit sequence consists of an exit action call * and a state switch for all leaf states. */ @SuppressWarnings("unused") @Test public void testCompositeStateExitSequence_Deep() { Statechart sc = _createStatechart("sc"); { InterfaceScope s_scope = _createInterfaceScope("Interface", sc); VariableDefinition v1 = _createVariableDefinition("v1", TYPE_INTEGER, s_scope); EventDefinition e1 = _createEventDefinition("e1", s_scope); Region r = _createRegion("r", sc); { State s1 = _createState("s1", r); { _createExitAssignment(v1, s1, 1); Region r_s1 = _createRegion("r", s1); { State s3 = _createState("s3", r_s1); { _createExitAssignment(v1, s3, 2); Region r_s3 = _createRegion("r", s3); { State s4 = _createState("s4", r_s3); _createExitAssignment(v1, s4, 3); FinalState fs = _createFinalState(r_s3); } } } } State s2 = _createState("s2", r); { Region r_s1 = _createRegion("r", s2); { _createState("s6", r_s1); } } } } ExecutionFlow flow = sequencer.transform(sc); ExecutionState _s1 = flow.getStates().get(0); assertEquals("sc.r.s1", _s1.getName()); ExecutionState _s3 = flow.getStates().get(1); assertEquals("sc.r.s1.r.s3", _s3.getName()); ExecutionState _s4 = flow.getStates().get(2); assertEquals("sc.r.s1.r.s3.r.s4", _s4.getName()); ExecutionState _fs = flow.getStates().get(3); assertEquals("sc.r.s1.r.s3.r._final_", _fs.getName()); ExecutionState _s6 = flow.getStates().get(5); assertEquals("sc.r.s2.r.s6", _s6.getName()); assertNull(_fs.getEntryAction()); assertNull(_fs.getExitAction()); assertNotNull(_fs.getExitSequence()); assertEquals(2, _s1.getExitSequence().getSteps().size()); ExecutionScope _r_s1 = _s1.getSubScopes().get(0); assertCall(_s1.getExitSequence(), 0, _r_s1.getExitSequence()); Step _switch = _r_s1.getExitSequence().getSteps().get(0); assertStateSwitch(_switch, _s4, _fs); assertCall( assertedSequence(assertedStateCase(_switch, _s4).getStep()), 0, _s4.getExitSequence()); assertCall(assertedSequence(assertedStateCase(_switch, _s4).getStep()), 1, _s3.getExitAction()); assertCall( assertedSequence(assertedStateCase(_switch, _fs).getStep()), 0, _fs.getExitSequence()); assertCall(assertedSequence(assertedStateCase(_switch, _fs).getStep()), 1, _s3.getExitAction()); assertCall(_s1.getExitSequence(), 1, _s1.getExitAction()); }