public ProjCoordinate project(double lplam, double lpphi, ProjCoordinate xy) { if (spherical) { xy.x = Math.asin(Math.cos(lpphi) * Math.sin(lplam)); xy.y = Math.atan2(Math.tan(lpphi), Math.cos(lplam)) - projectionLatitude; } else { xy.y = ProjectionMath.mlfn(lpphi, n = Math.sin(lpphi), c = Math.cos(lpphi), en); n = 1. / Math.sqrt(1. - es * n * n); tn = Math.tan(lpphi); t = tn * tn; a1 = lplam * c; c *= es * c / (1 - es); a2 = a1 * a1; xy.x = n * a1 * (1. - a2 * t * (C1 - (8. - t + 8. * c) * a2 * C2)); xy.y -= m0 - n * tn * a2 * (.5 + (5. - t + 6. * c) * a2 * C3); } return xy; }
public ProjCoordinate projectInverse(double xyx, double xyy, ProjCoordinate out) { if (spherical) { out.y = Math.asin(Math.sin(dd = xyy + projectionLatitude) * Math.cos(xyx)); out.x = Math.atan2(Math.tan(xyx), Math.cos(dd)); } else { double ph1; ph1 = ProjectionMath.inv_mlfn(m0 + xyy, es, en); tn = Math.tan(ph1); t = tn * tn; n = Math.sin(ph1); r = 1. / (1. - es * n * n); n = Math.sqrt(r); r *= (1. - es) * n; dd = xyx / n; d2 = dd * dd; out.y = ph1 - (n * tn / r) * d2 * (.5 - (1. + 3. * t) * d2 * C3); out.x = dd * (1. + t * d2 * (-C4 + (1. + 3. * t) * d2 * C5)) / Math.cos(ph1); } return out; }
public ProjCoordinate projectInverse(double x, double y, ProjCoordinate lp) { if (spherical) { double c, rh, sinc, cosc; sinc = Math.sin(c = 2. * Math.atan((rh = ProjectionMath.distance(x, y)) / akm1)); cosc = Math.cos(c); lp.x = 0.; switch (mode) { case EQUATOR: if (Math.abs(rh) <= EPS10) lp.y = 0.; else lp.y = Math.asin(y * sinc / rh); if (cosc != 0. || x != 0.) lp.x = Math.atan2(x * sinc, cosc * rh); break; case OBLIQUE: if (Math.abs(rh) <= EPS10) lp.y = projectionLatitude; else lp.y = Math.asin(cosc * sinphi0 + y * sinc * cosphi0 / rh); if ((c = cosc - sinphi0 * Math.sin(lp.y)) != 0. || x != 0.) lp.x = Math.atan2(x * sinc * cosphi0, c * rh); break; case NORTH_POLE: y = -y; case SOUTH_POLE: if (Math.abs(rh) <= EPS10) lp.y = projectionLatitude; else lp.y = Math.asin(mode == SOUTH_POLE ? -cosc : cosc); lp.x = (x == 0. && y == 0.) ? 0. : Math.atan2(x, y); break; } } else { double cosphi, sinphi, tp, phi_l, rho, halfe, halfpi; rho = ProjectionMath.distance(x, y); switch (mode) { case OBLIQUE: case EQUATOR: default: // To prevent the compiler complaining about uninitialized vars. cosphi = Math.cos(tp = 2. * Math.atan2(rho * cosphi0, akm1)); sinphi = Math.sin(tp); phi_l = Math.asin(cosphi * sinphi0 + (y * sinphi * cosphi0 / rho)); tp = Math.tan(.5 * (ProjectionMath.HALFPI + phi_l)); x *= sinphi; y = rho * cosphi0 * cosphi - y * sinphi0 * sinphi; halfpi = ProjectionMath.HALFPI; halfe = .5 * e; break; case NORTH_POLE: y = -y; case SOUTH_POLE: phi_l = ProjectionMath.HALFPI - 2. * Math.atan(tp = -rho / akm1); halfpi = -ProjectionMath.HALFPI; halfe = -.5 * e; break; } for (int i = 8; i-- != 0; phi_l = lp.y) { sinphi = e * Math.sin(phi_l); lp.y = 2. * Math.atan(tp * Math.pow((1. + sinphi) / (1. - sinphi), halfe)) - halfpi; if (Math.abs(phi_l - lp.y) < EPS10) { if (mode == SOUTH_POLE) lp.y = -lp.y; lp.x = (x == 0. && y == 0.) ? 0. : Math.atan2(x, y); return lp; } } throw new ConvergenceFailureException("Iteration didn't converge"); } return lp; }