@Override
 public int terminalFor(State state) {
   Vertex v = state.getVertex();
   if (v instanceof StreetVertex || v instanceof StreetLocation) {
     TraverseModeSet modes = state.getOptions().modes;
     if (modes.contains(TraverseMode.BICYCLE)
         && (!modes.contains(TraverseMode.WALK) || !state.isBikeRenting())) {
       Edge edge = state.getBackEdge();
       if (edge instanceof StreetEdge) {
         int cls = ((StreetEdge) edge).getStreetClass();
         return cls & StreetEdge.CROSSING_CLASS_MASK;
       } else {
         return StreetEdge.CLASS_OTHERPATH;
       }
     } else {
       return StreetEdge.CLASS_OTHERPATH;
     }
   }
   if (v instanceof OnboardVertex) return TRANSIT;
   if (v instanceof OffboardVertex) return STATION;
   if (v instanceof BikeRentalStationVertex
       || v instanceof ParkAndRideVertex
       || v instanceof BikeParkVertex) return StreetEdge.CLASS_OTHERPATH;
   else throw new RuntimeException("failed to tokenize path");
 }
  public RaptorStateSet getStateSet(RoutingRequest options) {

    final Graph graph;
    if (options.rctx == null) {
      graph = graphService.getGraph(options.getRouterId());
      options.setRoutingContext(graph);
      options.rctx.pathParsers =
          new PathParser[] {new BasicPathParser(), new NoThruTrafficPathParser()};
    } else {
      graph = options.rctx.graph;
    }

    RaptorData data = graph.getService(RaptorDataService.class).getData();

    // we multiply the initial walk distance to account for epsilon dominance.
    options.setMaxWalkDistance(options.getMaxWalkDistance() * WALK_EPSILON);

    RoutingRequest walkOptions = options.clone();
    walkOptions.rctx.pathParsers = new PathParser[0];
    TraverseModeSet modes = options.getModes().clone();
    modes.setTransit(false);
    walkOptions.setModes(modes);
    RaptorSearch search = new RaptorSearch(data, options);

    for (int i = 0; i < options.getMaxTransfers() + 2; ++i) {
      if (!round(data, options, walkOptions, search, i)) break;
    }
    RaptorStateSet result = new RaptorStateSet();
    result.statesByStop = search.statesByStop;
    return result;
  }
 /**
  * Get the transit stop icon for the given mode
  *
  * @param mode
  * @return the transit stop icon for the given mode
  */
 public static int getStopIcon(TraverseModeSet mode) {
   if (mode.contains(TraverseMode.BUSISH) && mode.contains(TraverseMode.TRAINISH)) {
     return R.drawable.ri_flag_triangle;
   } else if (mode.contains(TraverseMode.BUSISH)) {
     return R.drawable.ri_flag_triangle;
   } else if (mode.contains(TraverseMode.TRAINISH)) {
     return R.drawable.ri_flag_triangle;
   }
   // Just use the mode icon
   return getModeIcon(mode);
 }
 /**
  * Gets the mode icon for the given mode
  *
  * @return the mode icon for the given mode
  */
 public static int getModeIcon(TraverseModeSet mode) {
   if (mode.contains(TraverseMode.BUSISH) && mode.contains(TraverseMode.TRAINISH)) {
     return R.drawable.ic_maps_directions_bus;
   } else if (mode.contains(TraverseMode.BUSISH)) {
     return R.drawable.ic_maps_directions_bus;
   } else if (mode.contains(TraverseMode.TRAINISH)) {
     return R.drawable.ic_directions_railway;
   } else if (mode.contains(TraverseMode.FERRY)) {
     return R.drawable.ic_directions_boat;
   } else if (mode.contains(TraverseMode.GONDOLA)) {
     return R.drawable.ic_directions_boat;
   } else if (mode.contains(TraverseMode.SUBWAY)) {
     return R.drawable.ic_directions_subway;
   } else if (mode.contains(TraverseMode.TRAM)) {
     return R.drawable.ic_directions_railway;
   } else if (mode.contains(TraverseMode.WALK)) {
     return R.drawable.ic_directions_walk;
   } else if (mode.contains(TraverseMode.BICYCLE)) {
     return R.drawable.ic_directions_bike;
   } else {
     Log.d(TAG, "No icon for mode set: " + mode);
     return -1;
   }
 }
  /**
   * Calculates walksheds for a given location, based on time given to walk and the walk speed.
   *
   * <p>Depending on the value for the "output" parameter (i.e. "POINTS", "SHED" or "EDGES"), a
   * different type of GeoJSON geometry is returned. If a SHED is requested, then a ConcaveHull of
   * the EDGES/roads is returned. If that fails, a ConvexHull will be returned.
   *
   * <p>The ConcaveHull parameter is set to 0.005 degrees. The offroad walkspeed is assumed to be
   * 0.83333 m/sec (= 3km/h) until a road is hit.
   *
   * <p>Note that the set of EDGES/roads returned as well as POINTS returned may contain duplicates.
   * If POINTS are requested, then not the end-points are returned at which the max time is reached,
   * but instead all the graph nodes/crossings that are within the time limits.
   *
   * <p>In case there is no road near by within the given time, then a circle for the walktime limit
   * is created and returned for the SHED parameter. Otherwise the edge with the direction towards
   * the closest road. Note that the circle is calculated in Euclidian 2D coordinates, and
   * distortions towards an ellipse will appear if it is transformed/projected to the user location.
   *
   * <p>An example request may look like this:
   * localhost:8080/otp-rest-servlet/ws/iso?layers=traveltime&styles=mask&batch=true&fromPlace=51.040193121307176
   * %2C-114.04471635818481&toPlace
   * =51.09098935%2C-113.95179705&time=2012-06-06T08%3A00%3A00&mode=WALK&maxWalkDistance=10000&walkSpeed=1.38&walkTime=10.7&output=EDGES
   * Though the first parameters (i) layer, (ii) styles and (iii) batch could be discarded.
   *
   * @param walkmins Maximum number of minutes to walk.
   * @param output Can be set to "POINTS", "SHED" or "EDGES" to return different types of GeoJSON
   *     geometry. SHED returns a ConcaveHull or ConvexHull of the edges/roads. POINTS returns all
   *     graph nodes that are within the time limit.
   * @return a JSON document containing geometries (either points, lineStrings or a polygon).
   * @throws Exception
   * @author sstein---geo.uzh.ch
   */
  @GET
  @Produces({MediaType.APPLICATION_JSON})
  public String getIsochrone(
      @QueryParam("walkTime") @DefaultValue("15") double walkmins,
      @QueryParam("output") @DefaultValue("POINTS") String output)
      throws Exception {

    this.debugGeoms = new ArrayList();
    this.tooFastTraversedEdgeGeoms = new ArrayList();

    RoutingRequest sptRequestA = buildRequest(0);
    String from = sptRequestA.getFrom().toString();
    int pos = 1;
    float lat = 0;
    float lon = 0;
    for (String s : from.split(",")) {
      if (s.isEmpty()) {
        // no location
        Response.status(Status.BAD_REQUEST).entity("no position").build();
        return null;
      }
      try {
        float num = Float.parseFloat(s);
        if (pos == 1) {
          lat = num;
        }
        if (pos == 2) {
          lon = num;
        }
      } catch (Exception e) {
        throw new WebApplicationException(
            Response.status(Status.BAD_REQUEST)
                .entity(
                    "Could not parse position string to number. Require numerical lat & long coords.")
                .build());
      }
      pos++;
    }

    GeometryFactory gf = new GeometryFactory();

    Coordinate dropPoint = new Coordinate(lon, lat);

    int walkInMin = (int) Math.floor(walkmins);
    double walkInSec = walkmins * 60;
    LOG.debug(
        "given travel time: " + walkInMin + " mins + " + (walkInSec - (60 * walkInMin)) + " sec");
    // restrict the evaluated SPT size to 30mins for requests with walking < 30min
    // if larger walking times are requested we adjust the evaluated
    // graph dynamically by 1.3 * min -> this should save processing time
    if (walkInMin < 30) {
      sptRequestA.worstTime = sptRequestA.dateTime + (30 * 60);
    } else {
      sptRequestA.worstTime = sptRequestA.dateTime + Math.round(walkInMin * 1.3 * 60);
    }
    // set the switch-time for shed/area calculation, i.e. to decide if the hull is calculated based
    // on points or on edges
    TraverseModeSet modes = sptRequestA.modes;
    LOG.debug("mode(s): " + modes);
    if ((modes.contains(TraverseMode.TRANSIT))
        || (modes.contains(TraverseMode.BUSISH))
        || (modes.contains(TraverseMode.TRAINISH))) {
      shedCalcMethodSwitchTimeInSec =
          60 * 20; // 20min (use 20min for transit, since buses may not come all the time)
    } else if (modes.contains(TraverseMode.CAR)) {
      shedCalcMethodSwitchTimeInSec = 60 * 10; // 10min
    } else if (modes.contains(TraverseMode.BICYCLE)) {
      shedCalcMethodSwitchTimeInSec = 60 * 10; // 10min
    } else {
      shedCalcMethodSwitchTimeInSec = 60 * 20; // 20min
    }
    // set the maxUserSpeed, which is used later to check for u-type streets/crescents when
    // calculating sub-edges;
    // Note, that the car speed depends on the edge itself, so this value may be replaced later
    this.usesCar = false;
    int numberOfModes = modes.getModes().size();
    if (numberOfModes == 1) {
      if (modes.getWalk()) {
        this.maxUserSpeed = sptRequestA.getWalkSpeed();
      } else if (modes.getBicycle()) {
        this.maxUserSpeed = sptRequestA.getBikeSpeed();
      } else if (modes.getDriving()) {
        this.maxUserSpeed = sptRequestA.getCarSpeed();
        this.usesCar = true;
      }
    } else { // for all other cases (multiple-modes)
      // sstein: I thought I may set it to 36.111 m/sec = 130 km/h,
      // but maybe it is better to assume walk speed for transit, i.e. treat it like if the
      // person gets off the bus on the last crossing and walks the "last mile".
      this.maxUserSpeed = sptRequestA.getWalkSpeed();
    }

    if (doSpeedTest) {
      LOG.debug("performing angle and speed based test to detect u-shapes");
    } else {
      LOG.debug("performing only angle based test to detect u-shapes");
    }

    // TODO: OTP prefers to snap to car-roads/ways, which is not so nice, when walking,
    // and a footpath is closer by. So far there is no option to switch that off

    // create the ShortestPathTree
    try {
      sptRequestA.setRoutingContext(graphService.getGraph());
    } catch (Exception e) {
      // if we get an exception here, and in particular a VertexNotFoundException,
      // then it is likely that we chose a (transit) mode without having that (transit) modes data
      LOG.debug("cannot set RoutingContext: " + e.toString());
      LOG.debug("cannot set RoutingContext: setting mode=WALK");
      sptRequestA.setMode(TraverseMode.WALK); // fall back to walk mode
      sptRequestA.setRoutingContext(graphService.getGraph());
    }
    ShortestPathTree sptA = sptService.getShortestPathTree(sptRequestA);
    StreetLocation origin = (StreetLocation) sptRequestA.rctx.fromVertex;
    sptRequestA.cleanup(); // remove inserted points

    // create a LineString for display
    Coordinate pathToStreetCoords[] = new Coordinate[2];
    pathToStreetCoords[0] = dropPoint;
    pathToStreetCoords[1] = origin.getCoordinate();
    LineString pathToStreet = gf.createLineString(pathToStreetCoords);

    // get distance between origin and drop point for time correction
    double distanceToRoad =
        this.distanceLibrary.distance(origin.getY(), origin.getX(), dropPoint.y, dropPoint.x);
    long offRoadTimeCorrection = (long) (distanceToRoad / this.offRoadWalkspeed);

    //
    // --- filter the states ---
    //
    Set<Coordinate> visitedCoords = new HashSet<Coordinate>();
    ArrayList<Edge> allConnectingEdges = new ArrayList<Edge>();
    Coordinate coords[] = null;
    long maxTime = (long) walkInSec - offRoadTimeCorrection;
    // System.out.println("Reducing walktime from: " + (int)(walkmins * 60) + "sec to " + maxTime +
    // "sec due to initial walk of " + distanceToRoad
    // + "m");

    // if the initial walk is already to long, there is no need to parse...
    if (maxTime <= 0) {
      noRoadNearBy = true;
      long timeToWalk = (long) walkInSec;
      long timeBetweenStates = offRoadTimeCorrection;
      long timeMissing = timeToWalk;
      double fraction = (double) timeMissing / (double) timeBetweenStates;
      pathToStreet = getSubLineString(pathToStreet, fraction);
      LOG.debug(
          "no street found within giving travel time (for off-road walkspeed: {} m/sec)",
          this.offRoadWalkspeed);
    } else {
      noRoadNearBy = false;
      Map<ReversibleLineStringWrapper, Edge> connectingEdgesMap = Maps.newHashMap();
      for (State state : sptA.getAllStates()) {
        long et = state.getElapsedTimeSeconds();
        if (et <= maxTime) {
          // -- filter points, as the same coordinate may be passed several times due to the graph
          // structure
          // in a Calgary suburb family homes neighborhood with a 15min walkshed it filtered about
          // 250 points away (while 145 were finally displayed)
          if (visitedCoords.contains(state.getVertex().getCoordinate())) {
            continue;
          } else {
            visitedCoords.add(state.getVertex().getCoordinate());
          }
          // -- get all Edges needed later for the edge representation
          // and to calculate an edge-based walkshed
          // Note, it can happen that we get a null geometry here, e.g. for hop-edges!
          Collection<Edge> vertexEdgesIn = state.getVertex().getIncoming();
          for (Iterator<Edge> iterator = vertexEdgesIn.iterator(); iterator.hasNext(); ) {
            Edge edge = (Edge) iterator.next();
            Geometry edgeGeom = edge.getGeometry();
            if (edgeGeom != null) { // make sure we get only real edges
              if (edgeGeom instanceof LineString) {
                // allConnectingEdges.add(edge); // instead of this, use a map now, so we don't have
                // similar edge many times
                connectingEdgesMap.put(
                    new ReversibleLineStringWrapper((LineString) edgeGeom), edge);
              }
            }
          }
          Collection<Edge> vertexEdgesOut = state.getVertex().getOutgoing();
          for (Iterator<Edge> iterator = vertexEdgesOut.iterator(); iterator.hasNext(); ) {
            Edge edge = (Edge) iterator.next();
            Geometry edgeGeom = edge.getGeometry();
            if (edgeGeom != null) {
              if (edgeGeom instanceof LineString) {
                // allConnectingEdges.add(edge); // instead of this, use a map now, so we don't
                // similar edge many times
                connectingEdgesMap.put(
                    new ReversibleLineStringWrapper((LineString) edgeGeom), edge);
              }
            }
          }
        } // end : if(et < maxTime)
      }
      // --
      // points from list to array, for later
      coords = new Coordinate[visitedCoords.size()];
      int i = 0;
      for (Coordinate c : visitedCoords) coords[i++] = c;

      // connection edges from Map to List
      allConnectingEdges.clear();
      for (Edge tedge : connectingEdgesMap.values()) allConnectingEdges.add(tedge);
    }
    StringWriter sw = new StringWriter();
    GeoJSONBuilder json = new GeoJSONBuilder(sw);
    //
    // -- create the different outputs ---
    //
    try {
      if (output.equals(IsoChrone.RESULT_TYPE_POINTS)) {
        // in case there was no road we create a circle and
        // and return those points
        if (noRoadNearBy) {
          Geometry circleShape = createCirle(dropPoint, pathToStreet);
          coords = circleShape.getCoordinates();
        }
        // -- the states/nodes with time elapsed <= X min.
        LOG.debug("write multipoint geom with {} points", coords.length);
        json.writeGeom(gf.createMultiPoint(coords));
        LOG.debug("done");
      } else if (output.equals(IsoChrone.RESULT_TYPE_SHED)) {

        Geometry geomsArray[] = null;
        // in case there was no road we create a circle
        if (noRoadNearBy) {
          Geometry circleShape = createCirle(dropPoint, pathToStreet);
          json.writeGeom(circleShape);
        } else {
          if (maxTime > shedCalcMethodSwitchTimeInSec) { // eg., walkshed > 20 min
            // -- create a point-based walkshed
            // less exact and should be used for large walksheds with many edges
            LOG.debug("create point-based shed (not from edges)");
            geomsArray = new Geometry[coords.length];
            for (int j = 0; j < geomsArray.length; j++) {
              geomsArray[j] = gf.createPoint(coords[j]);
            }
          } else {
            // -- create an edge-based walkshed
            // it is more exact and should be used for short walks
            LOG.debug("create edge-based shed (not from points)");
            Map<ReversibleLineStringWrapper, LineString> walkShedEdges = Maps.newHashMap();
            // add the walk from the pushpin to closest street point
            walkShedEdges.put(new ReversibleLineStringWrapper(pathToStreet), pathToStreet);
            // get the edges and edge parts within time limits
            ArrayList<LineString> withinTimeEdges =
                this.getLinesAndSubEdgesWithinMaxTime(
                    maxTime,
                    allConnectingEdges,
                    sptA,
                    angleLimitForUShapeDetection,
                    distanceToleranceForUShapeDetection,
                    maxUserSpeed,
                    usesCar,
                    doSpeedTest);
            for (LineString ls : withinTimeEdges) {
              walkShedEdges.put(new ReversibleLineStringWrapper(ls), ls);
            }
            geomsArray = new Geometry[walkShedEdges.size()];
            int k = 0;
            for (LineString ls : walkShedEdges.values()) geomsArray[k++] = ls;
          } // end if-else: maxTime condition
          GeometryCollection gc = gf.createGeometryCollection(geomsArray);
          // create the concave hull, but in case it fails we just return the convex hull
          Geometry outputHull = null;
          LOG.debug(
              "create concave hull from {} geoms with edge length limit of about {} m (distance on meridian)",
              geomsArray.length,
              concaveHullAlpha * 111132);
          // 1deg at Latitude phi = 45deg is about 111.132km
          // (see wikipedia:
          // http://en.wikipedia.org/wiki/Latitude#The_length_of_a_degree_of_latitude)
          try {
            ConcaveHull hull = new ConcaveHull(gc, concaveHullAlpha);
            outputHull = hull.getConcaveHull();
          } catch (Exception e) {
            outputHull = gc.convexHull();
            LOG.debug("Could not generate ConcaveHull for WalkShed, using ConvexHull instead.");
          }
          LOG.debug("write shed geom");
          json.writeGeom(outputHull);
          LOG.debug("done");
        }
      } else if (output.equals(IsoChrone.RESULT_TYPE_EDGES)) {
        // in case there was no road we return only the suggested path to the street
        if (noRoadNearBy) {
          json.writeGeom(pathToStreet);
        } else {
          // -- if we would use only the edges from the paths to the origin we will miss
          // some edges that will be never on the shortest path (e.g. loops/crescents).
          // However, we can retrieve all edges by checking the times for each
          // edge end-point
          Map<ReversibleLineStringWrapper, LineString> walkShedEdges = Maps.newHashMap();
          // add the walk from the pushpin to closest street point
          walkShedEdges.put(new ReversibleLineStringWrapper(pathToStreet), pathToStreet);
          // get the edges and edge parts within time limits
          ArrayList<LineString> withinTimeEdges =
              this.getLinesAndSubEdgesWithinMaxTime(
                  maxTime,
                  allConnectingEdges,
                  sptA,
                  angleLimitForUShapeDetection,
                  distanceToleranceForUShapeDetection,
                  maxUserSpeed,
                  usesCar,
                  doSpeedTest);
          for (LineString ls : withinTimeEdges) {
            walkShedEdges.put(new ReversibleLineStringWrapper(ls), ls);
          }
          Geometry mls = null;
          LineString edges[] = new LineString[walkShedEdges.size()];
          int k = 0;
          for (LineString ls : walkShedEdges.values()) edges[k++] = ls;
          LOG.debug("create multilinestring from {} geoms", edges.length);
          mls = gf.createMultiLineString(edges);
          LOG.debug("write geom");
          json.writeGeom(mls);
          LOG.debug("done");
        }
      } else if (output.equals("DEBUGEDGES")) {
        // -- for debugging, i.e. display of detected u-shapes/crescents
        ArrayList<LineString> withinTimeEdges =
            this.getLinesAndSubEdgesWithinMaxTime(
                maxTime,
                allConnectingEdges,
                sptA,
                angleLimitForUShapeDetection,
                distanceToleranceForUShapeDetection,
                maxUserSpeed,
                usesCar,
                doSpeedTest);
        if (this.showTooFastEdgesAsDebugGeomsANDnotUShapes) {
          LOG.debug("displaying edges that are traversed too fast");
          this.debugGeoms = this.tooFastTraversedEdgeGeoms;
        } else {
          LOG.debug("displaying detected u-shaped roads/crescents");
        }
        LineString edges[] = new LineString[this.debugGeoms.size()];
        int k = 0;
        for (Iterator iterator = debugGeoms.iterator(); iterator.hasNext(); ) {
          LineString ls = (LineString) iterator.next();
          edges[k] = ls;
          k++;
        }
        Geometry mls = gf.createMultiLineString(edges);
        LOG.debug("write debug geom");
        json.writeGeom(mls);
        LOG.debug("done");
      }
    } catch (org.codehaus.jettison.json.JSONException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }
    return sw.toString();
  }
  @Override
  public List<GraphPath> getPaths(RoutingRequest options) {

    final Graph graph = graphService.getGraph(options.getRouterId());
    if (options.rctx == null) {
      options.setRoutingContext(graph);
      options.rctx.pathParsers =
          new PathParser[] {new BasicPathParser(), new NoThruTrafficPathParser()};
    }

    if (!options.getModes().isTransit()) {
      return sptService.getShortestPathTree(options).getPaths();
    }

    // also fall back to A* for short trips
    double distance =
        distanceLibrary.distance(
            options.rctx.origin.getCoordinate(), options.rctx.target.getCoordinate());
    if (distance < shortPathCutoff) {
      log.debug("Falling back to A* for very short path");
      return shortPathService.getPaths(options);
    }

    RaptorDataService service = graph.getService(RaptorDataService.class);
    if (service == null) {
      log.warn("No raptor data.  Rebuild with RaptorDataBuilder");
      return Collections.emptyList();
    }
    RaptorData data = service.getData();

    // we multiply the initial walk distance to account for epsilon dominance.
    double initialWalk = options.getMaxWalkDistance() * WALK_EPSILON;
    options.setMaxWalkDistance(initialWalk);

    // do not even bother with obviously impossible walks
    double minWalk =
        options.rctx.origin.getDistanceToNearestTransitStop()
            + options.rctx.target.getDistanceToNearestTransitStop();
    if (options.getMaxWalkDistance() < minWalk) {
      options.setMaxWalkDistance(minWalk);
    }

    RoutingRequest walkOptions = options.clone();
    walkOptions.rctx.pathParsers = new PathParser[0];
    TraverseModeSet modes = options.getModes().clone();
    modes.setTransit(false);
    walkOptions.setModes(modes);
    RaptorSearch search = new RaptorSearch(data, options);

    if (data.maxTransitRegions != null) {
      Calendar tripDate = Calendar.getInstance(graph.getTimeZone());
      tripDate.setTime(new Date(1000L * options.dateTime));

      Calendar maxTransitStart = Calendar.getInstance(graph.getTimeZone());
      maxTransitStart.set(Calendar.YEAR, data.maxTransitRegions.startYear);
      maxTransitStart.set(Calendar.MONTH, data.maxTransitRegions.startMonth);
      maxTransitStart.set(Calendar.DAY_OF_MONTH, data.maxTransitRegions.startDay);

      int day = 0;
      while (tripDate.after(maxTransitStart)) {
        day++;
        tripDate.add(Calendar.DAY_OF_MONTH, -1);
      }
      if (day > data.maxTransitRegions.maxTransit.length || options.isWheelchairAccessible()) {
        day = -1;
      }

      search.maxTimeDayIndex = day;
    }

    int rushAheadRound = preliminaryRaptorSearch(data, options, walkOptions, search);

    long searchBeginTime = System.currentTimeMillis();

    double expectedWorstTime =
        1.5
            * distanceLibrary.distance(
                options.rctx.origin.getCoordinate(), options.rctx.target.getCoordinate())
            / options.getWalkSpeed();

    int foundSoFar = 0;

    double firstWalkDistance = 0;
    List<RaptorState> targetStates = new ArrayList<RaptorState>();

    do {
      int bestElapsedTime = Integer.MAX_VALUE;
      RETRY:
      do {
        for (int round = 0; round < options.getMaxTransfers() + 2; ++round) {
          if (!round(data, options, walkOptions, search, round)) break;

          long elapsed = System.currentTimeMillis() - searchBeginTime;
          if (elapsed > multiPathTimeout * 1000 && multiPathTimeout > 0 && targetStates.size() > 0)
            break RETRY;

          ArrayList<RaptorState> toRemove = new ArrayList<RaptorState>();
          for (RaptorState state : search.getTargetStates()) {
            if (state.nBoardings == 0 && options.getMaxWalkDistance() > initialWalk) {
              toRemove.add(state);
            }
          }
          if (search.getTargetStates().size() > 0) {
            if (firstWalkDistance == 0) {
              firstWalkDistance = options.getMaxWalkDistance();
            }
            for (RaptorState state : toRemove) {
              search.removeTargetState(state.walkPath);
            }
          }
          if (targetStates.size() >= options.getNumItineraries() && round >= rushAheadRound) {
            int oldBest = bestElapsedTime;
            for (RaptorState state : search.getTargetStates()) {
              final int elapsedTime = (int) Math.abs(state.arrivalTime - options.dateTime);
              if (elapsedTime < bestElapsedTime) {
                bestElapsedTime = elapsedTime;
              }
            }

            int improvement = oldBest - bestElapsedTime;
            if (improvement < 600 && bestElapsedTime < expectedWorstTime) break RETRY;
          }
        }

        if (foundSoFar < search.getTargetStates().size()) {
          foundSoFar = search.getTargetStates().size();
        } else if (foundSoFar > 0) {
          // we didn't find anything new in this round, and we already have
          // some paths, so bail out
          break;
        }
        options = options.clone();
        walkOptions = walkOptions.clone();
        if (search.getTargetStates().size() > 0 && bestElapsedTime < expectedWorstTime) {
          // we have found some paths so we no longer want to expand the max walk distance
          break RETRY;
        } else {
          options.setMaxWalkDistance(options.getMaxWalkDistance() * 2);
          walkOptions.setMaxWalkDistance(options.getMaxWalkDistance());

          options.setWalkReluctance(options.getWalkReluctance() * 2);
          walkOptions.setWalkReluctance(options.getWalkReluctance());
        }
        search.reset(options);

      } while (options.getMaxWalkDistance() < initialWalk * MAX_WALK_MULTIPLE
          && initialWalk < Double.MAX_VALUE);

      options = options.clone();
      walkOptions = walkOptions.clone();
      for (RaptorState state : search.getTargetStates()) {
        for (AgencyAndId trip : state.getTrips()) {
          options.bannedTrips.add(trip);
        }
      }

      if (search.getTargetStates().size() == 0) break; // no paths found; searching more won't help

      options.setMaxWalkDistance(firstWalkDistance);
      walkOptions.setMaxWalkDistance(firstWalkDistance);

      targetStates.addAll(search.getTargetStates());
      search = new RaptorSearch(data, options);

    } while (targetStates.size() < options.getNumItineraries());

    collectRoutesUsed(data, options, targetStates);

    if (targetStates.isEmpty()) {
      log.info("RAPTOR found no paths");
    }
    Collections.sort(targetStates);

    if (targetStates.size() > options.getNumItineraries())
      targetStates = targetStates.subList(0, options.getNumItineraries());

    List<GraphPath> paths = new ArrayList<GraphPath>();
    for (RaptorState targetState : targetStates) {
      // reconstruct path
      ArrayList<RaptorState> states = new ArrayList<RaptorState>();
      RaptorState cur = targetState;
      while (cur != null) {
        states.add(cur);
        cur = cur.getParent();
      }
      // states is in reverse order of time
      State state = getState(targetState.getRequest(), data, states);
      paths.add(new GraphPath(state, true));
    }

    return paths;
  }