@Override public void notifyAfterMobsim(AfterMobsimEvent event) { Network network = event.getServices().getScenario().getNetwork(); DescriptiveStatistics error = new DescriptiveStatistics(); DescriptiveStatistics errorAbs = new DescriptiveStatistics(); DescriptivePiStatistics errorWeighted = new WSMStatsFactory().newInstance(); TDoubleArrayList errorVals = new TDoubleArrayList(); TDoubleArrayList caps = new TDoubleArrayList(); TDoubleArrayList speeds = new TDoubleArrayList(); for (Count count : counts.getCounts().values()) { if (!count.getId().toString().startsWith(ODCalibrator.VIRTUAL_ID_PREFIX)) { double obsVal = 0; for (int i = 1; i < 25; i++) { obsVal += count.getVolume(i).getValue(); } if (obsVal > 0) { double simVal = calculator.getOccupancy(count.getId()); simVal *= factor; double err = (simVal - obsVal) / obsVal; error.addValue(err); errorAbs.addValue(Math.abs(err)); errorWeighted.addValue(Math.abs(err), 1 / obsVal); Link link = network.getLinks().get(count.getId()); errorVals.add(Math.abs(err)); caps.add(link.getCapacity()); speeds.add(link.getFreespeed()); } } } logger.info( String.format( "Relative counts error: mean = %s, var = %s, stderr = %s, min = %s, max = %s", error.getMean(), error.getVariance(), error.getStandardDeviation(), error.getMin(), error.getMax())); logger.info( String.format( "Absolute relative counts error: mean = %s, var = %s, stderr = %s, min = %s, max = %s", errorAbs.getMean(), errorAbs.getVariance(), errorAbs.getStandardDeviation(), errorAbs.getMin(), errorAbs.getMax())); logger.info( String.format( "Absolute weigthed relative counts error: mean = %s, var = %s, stderr = %s, min = %s, max = %s", errorWeighted.getMean(), errorWeighted.getVariance(), errorWeighted.getStandardDeviation(), errorWeighted.getMin(), errorWeighted.getMax())); String outdir = event.getServices().getControlerIO().getIterationPath(event.getIteration()); try { TDoubleDoubleHashMap map = Correlations.mean(caps.toArray(), errorVals.toArray()); StatsWriter.writeHistogram( map, "capacity", "counts", String.format("%s/countsError.capacity.txt", outdir)); map = Correlations.mean(speeds.toArray(), errorVals.toArray()); StatsWriter.writeHistogram( map, "speed", "counts", String.format("%s/countsError.speed.txt", outdir)); StatsWriter.writeHistogram( Histogram.createHistogram(error, new LinearDiscretizer(0.1), false), "Error", "Frequency", String.format("%s/countsError.hist.txt", outdir)); StatsWriter.writeHistogram( Histogram.createHistogram(errorAbs, new LinearDiscretizer(0.1), false), "Error (absolute)", "Frequency", String.format("%s/countsErrorAbs.hist.txt", outdir)); StatsWriter.writeHistogram( Histogram.createHistogram(errorWeighted, new LinearDiscretizer(0.1), true), "Error (weighted)", "Frequency", String.format("%s/countsErrorWeighted.hist.txt", outdir)); CountsCompare2GeoJSON.write(calculator, counts, factor, network, outdir); NetworkLoad2GeoJSON.write( event.getServices().getScenario().getNetwork(), calculator, factor, outdir + "/network.json"); } catch (Exception e) { e.printStackTrace(); } String rootOutDir = event.getServices().getControlerIO().getOutputPath(); boolean append = false; if (event.getIteration() > 0) { append = true; } writeErrorFile(error, String.format("%s/countsError.txt", rootOutDir), append); writeErrorFile(errorAbs, String.format("%s/countsAbsError.txt", rootOutDir), append); }
private void loadSociogramData(Collection<VertexRecord> records, SQLDumpReader sqlData) { logger.info("Loading sociogram data..."); Map<String, VertexRecord> map = sqlData.getFullAlterKeyMappping(records); TObjectIntHashMap<Vertex> rawDegrees = new TObjectIntHashMap<Vertex>(); for (Vertex v : proj.getVertices()) { rawDegrees.put(v, v.getNeighbours().size()); } int edgecnt = 0; int doublecnt = 0; int egoEdge = 0; Set<Vertex> notOkVertices = new HashSet<Vertex>(); Set<Vertex> okVertices = new HashSet<Vertex>(); DescriptiveStatistics notOkStats = new DescriptiveStatistics(); DescriptiveStatistics okStats = new DescriptiveStatistics(); DescriptiveStatistics numDistr = new DescriptiveStatistics(); DescriptiveStatistics numDistrNoZero = new DescriptiveStatistics(); DescriptiveStatistics sizeDistr = new DescriptiveStatistics(); TDoubleArrayList sizeValues = new TDoubleArrayList(); TDoubleArrayList kSizeValues = new TDoubleArrayList(); TDoubleArrayList numValues = new TDoubleArrayList(); TDoubleArrayList numValues2 = new TDoubleArrayList(); TDoubleArrayList kNumValues = new TDoubleArrayList(); for (VertexRecord record : records) { if (record.isEgo) { List<Set<String>> cliques = sqlData.getCliques(record); numDistr.addValue(cliques.size()); Vertex v = idMap.get(record.id); numValues.add(cliques.size()); kNumValues.add(v.getNeighbours().size()); if (!cliques.isEmpty()) numDistrNoZero.addValue(cliques.size()); for (Set<String> clique : cliques) { sizeDistr.addValue(clique.size()); sizeValues.add(clique.size()); kSizeValues.add(rawDegrees.get(projMap.get(v))); numValues2.add(cliques.size()); List<SocialSparseVertex> vertices = new ArrayList<SocialSparseVertex>(clique.size()); for (String alter : clique) { VertexRecord r = map.get(record.egoSQLId + alter); if (r != null) { SocialSparseVertex vertex = idMap.get(r.id); if (vertex != null) { vertices.add(vertex); } else { logger.warn("Vertex not found."); } } else { logger.warn("Record not found."); } } for (int i = 0; i < vertices.size(); i++) { for (int j = i + 1; j < vertices.size(); j++) { SampledVertexDecorator<SocialSparseVertex> vProj1 = projMap.get(vertices.get(i)); SampledVertexDecorator<SocialSparseVertex> vProj2 = projMap.get(vertices.get(j)); if (!vProj1.isSampled() && !vProj2.isSampled()) { if (Math.random() < 0.62) { SocialSparseEdge socialEdge = builder.addEdge(graph, vertices.get(i), vertices.get(j)); if (socialEdge != null) { projBuilder.addEdge(proj, vProj1, vProj2, socialEdge); edgecnt++; if (vProj1.isSampled() || vProj2.isSampled()) { egoEdge++; if (vProj1.isSampled()) notOkVertices.add(vProj1); else notOkVertices.add(vProj2); } } else { doublecnt++; if (vProj1.isSampled()) okVertices.add(vProj1); else if (vProj2.isSampled()) okVertices.add(vProj2); } } } } } } } } for (Vertex v : okVertices) okStats.addValue(rawDegrees.get(v)); for (Vertex v : notOkVertices) notOkStats.addValue(rawDegrees.get(v)); try { TDoubleDoubleHashMap hist = Histogram.createHistogram(okStats, new LinearDiscretizer(1), false); StatsWriter.writeHistogram( hist, "k", "n", "/Users/jillenberger/Work/socialnets/data/ivt2009/11-2011/augmented/k_ok.txt"); TDoubleDoubleHashMap hist2 = Histogram.createHistogram(notOkStats, new LinearDiscretizer(1), false); StatsWriter.writeHistogram( hist2, "k", "n", "/Users/jillenberger/Work/socialnets/data/ivt2009/11-2011/augmented/k_notok.txt"); TDoubleDoubleHashMap ratio = new TDoubleDoubleHashMap(); double[] keys = hist.keys(); for (double k : keys) { double val1 = hist2.get(k); double val2 = hist.get(k); ratio.put(k, val1 / (val2 + val1)); } StatsWriter.writeHistogram( ratio, "k", "p", "/Users/jillenberger/Work/socialnets/data/ivt2009/11-2011/augmented/k_ratio.txt"); logger.info("Mean num of cliques: " + numDistrNoZero.getMean()); logger.info("Mean size: " + sizeDistr.getMean()); logger.info("Median num of cliques: " + StatUtils.percentile(numDistrNoZero.getValues(), 50)); logger.info("Median size: " + StatUtils.percentile(sizeDistr.getValues(), 50)); TDoubleDoubleHashMap histNum = Histogram.createHistogram( numDistrNoZero, FixedSampleSizeDiscretizer.create(numDistrNoZero.getValues(), 2, 20), true); Histogram.normalize(histNum); StatsWriter.writeHistogram( histNum, "num", "freq", "/Users/jillenberger/Work/socialnets/data/ivt2009/11-2011/augmented/numCliques.txt"); TDoubleDoubleHashMap histSize = Histogram.createHistogram( sizeDistr, FixedSampleSizeDiscretizer.create(sizeDistr.getValues(), 2, 20), true); Histogram.normalize(histSize); StatsWriter.writeHistogram( histSize, "size", "freq", "/Users/jillenberger/Work/socialnets/data/ivt2009/11-2011/augmented/numPersons.txt"); Discretizer discretizer = FixedSampleSizeDiscretizer.create(kSizeValues.toNativeArray(), 20, 20); TDoubleArrayList valuesX = new TDoubleArrayList(); for (int i = 0; i < kSizeValues.size(); i++) { valuesX.add(discretizer.discretize(kSizeValues.get(i))); } Correlations.writeToFile( Correlations.mean(valuesX.toNativeArray(), sizeValues.toNativeArray()), "/Users/jillenberger/Work/socialnets/data/ivt2009/11-2011/augmented/size_k.txt", "k", "size"); discretizer = FixedSampleSizeDiscretizer.create(kNumValues.toNativeArray(), 20, 20); valuesX = new TDoubleArrayList(); for (int i = 0; i < kNumValues.size(); i++) { valuesX.add(discretizer.discretize(kNumValues.get(i))); } Correlations.writeToFile( Correlations.mean(valuesX.toNativeArray(), numValues.toNativeArray()), "/Users/jillenberger/Work/socialnets/data/ivt2009/11-2011/augmented/num_k.txt", "k", "n"); Correlations.writeToFile( Correlations.mean(numValues2.toNativeArray(), sizeValues.toNativeArray()), "/Users/jillenberger/Work/socialnets/data/ivt2009/11-2011/augmented/size_num.txt", "num", "size"); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.info( String.format("Inserted %1$s edges, %2$s edges already present.", edgecnt, doublecnt)); logger.info(String.format("Inserted %1$s edges between at least one ego.", egoEdge)); }