@Test
 public void testFrequentItems() {
   DataFrame df = context.table("testData2");
   String[] cols = {"a"};
   DataFrame results = df.stat().freqItems(cols, 0.2);
   Assert.assertTrue(results.collect()[0].getSeq(0).contains(1));
 }
  @Test
  public void testBloomFilter() {
    DataFrame df = context.range(1000);

    BloomFilter filter1 = df.stat().bloomFilter("id", 1000, 0.03);
    Assert.assertTrue(filter1.expectedFpp() - 0.03 < 1e-3);
    for (int i = 0; i < 1000; i++) {
      Assert.assertTrue(filter1.mightContain(i));
    }

    BloomFilter filter2 = df.stat().bloomFilter(col("id").multiply(3), 1000, 0.03);
    Assert.assertTrue(filter2.expectedFpp() - 0.03 < 1e-3);
    for (int i = 0; i < 1000; i++) {
      Assert.assertTrue(filter2.mightContain(i * 3));
    }

    BloomFilter filter3 = df.stat().bloomFilter("id", 1000, 64 * 5);
    Assert.assertTrue(filter3.bitSize() == 64 * 5);
    for (int i = 0; i < 1000; i++) {
      Assert.assertTrue(filter3.mightContain(i));
    }

    BloomFilter filter4 = df.stat().bloomFilter(col("id").multiply(3), 1000, 64 * 5);
    Assert.assertTrue(filter4.bitSize() == 64 * 5);
    for (int i = 0; i < 1000; i++) {
      Assert.assertTrue(filter4.mightContain(i * 3));
    }
  }
  @Test
  public void testTextLoad() {
    DataFrame df1 =
        context
            .read()
            .text(
                Thread.currentThread()
                    .getContextClassLoader()
                    .getResource("text-suite.txt")
                    .toString());
    Assert.assertEquals(4L, df1.count());

    DataFrame df2 =
        context
            .read()
            .text(
                Thread.currentThread()
                    .getContextClassLoader()
                    .getResource("text-suite.txt")
                    .toString(),
                Thread.currentThread()
                    .getContextClassLoader()
                    .getResource("text-suite2.txt")
                    .toString());
    Assert.assertEquals(5L, df2.count());
  }
 void validateDataFrameWithBeans(Bean bean, DataFrame df) {
   StructType schema = df.schema();
   Assert.assertEquals(
       new StructField("a", DoubleType$.MODULE$, false, Metadata.empty()), schema.apply("a"));
   Assert.assertEquals(
       new StructField("b", new ArrayType(IntegerType$.MODULE$, true), true, Metadata.empty()),
       schema.apply("b"));
   ArrayType valueType = new ArrayType(DataTypes.IntegerType, false);
   MapType mapType = new MapType(DataTypes.StringType, valueType, true);
   Assert.assertEquals(new StructField("c", mapType, true, Metadata.empty()), schema.apply("c"));
   Assert.assertEquals(
       new StructField("d", new ArrayType(DataTypes.StringType, true), true, Metadata.empty()),
       schema.apply("d"));
   Row first = df.select("a", "b", "c", "d").first();
   Assert.assertEquals(bean.getA(), first.getDouble(0), 0.0);
   // Now Java lists and maps are converted to Scala Seq's and Map's. Once we get a Seq below,
   // verify that it has the expected length, and contains expected elements.
   Seq<Integer> result = first.getAs(1);
   Assert.assertEquals(bean.getB().length, result.length());
   for (int i = 0; i < result.length(); i++) {
     Assert.assertEquals(bean.getB()[i], result.apply(i));
   }
   @SuppressWarnings("unchecked")
   Seq<Integer> outputBuffer = (Seq<Integer>) first.getJavaMap(2).get("hello");
   Assert.assertArrayEquals(
       bean.getC().get("hello"),
       Ints.toArray(JavaConverters.seqAsJavaListConverter(outputBuffer).asJava()));
   Seq<String> d = first.getAs(3);
   Assert.assertEquals(bean.getD().size(), d.length());
   for (int i = 0; i < d.length(); i++) {
     Assert.assertEquals(bean.getD().get(i), d.apply(i));
   }
 }
 @Ignore
 public void testShow() {
   // This test case is intended ignored, but to make sure it compiles correctly
   DataFrame df = context.table("testData");
   df.show();
   df.show(1000);
 }
 @Test
 public void testCreateDataFromFromList() {
   StructType schema = createStructType(Arrays.asList(createStructField("i", IntegerType, true)));
   List<Row> rows = Arrays.asList(RowFactory.create(0));
   DataFrame df = context.createDataFrame(rows, schema);
   Row[] result = df.collect();
   Assert.assertEquals(1, result.length);
 }
 @Test
 public void testSampleBy() {
   DataFrame df = context.range(0, 100, 1, 2).select(col("id").mod(3).as("key"));
   DataFrame sampled = df.stat().<Integer>sampleBy("key", ImmutableMap.of(0, 0.1, 1, 0.2), 0L);
   Row[] actual = sampled.groupBy("key").count().orderBy("key").collect();
   Row[] expected = {RowFactory.create(0, 5), RowFactory.create(1, 8)};
   Assert.assertArrayEquals(expected, actual);
 }
 @Test
 public void testSampleBy() {
   DataFrame df = context.range(0, 100, 1, 2).select(col("id").mod(3).as("key"));
   DataFrame sampled = df.stat().<Integer>sampleBy("key", ImmutableMap.of(0, 0.1, 1, 0.2), 0L);
   Row[] actual = sampled.groupBy("key").count().orderBy("key").collect();
   Assert.assertEquals(0, actual[0].getLong(0));
   Assert.assertTrue(0 <= actual[0].getLong(1) && actual[0].getLong(1) <= 8);
   Assert.assertEquals(1, actual[1].getLong(0));
   Assert.assertTrue(2 <= actual[1].getLong(1) && actual[1].getLong(1) <= 13);
 }
  @Test
  public void pivot() {
    DataFrame df = context.table("courseSales");
    Row[] actual =
        df.groupBy("year")
            .pivot("course", Arrays.<Object>asList("dotNET", "Java"))
            .agg(sum("earnings"))
            .orderBy("year")
            .collect();

    Assert.assertEquals(2012, actual[0].getInt(0));
    Assert.assertEquals(15000.0, actual[0].getDouble(1), 0.01);
    Assert.assertEquals(20000.0, actual[0].getDouble(2), 0.01);

    Assert.assertEquals(2013, actual[1].getInt(0));
    Assert.assertEquals(48000.0, actual[1].getDouble(1), 0.01);
    Assert.assertEquals(30000.0, actual[1].getDouble(2), 0.01);
  }
 @Test
 public void testCrosstab() {
   DataFrame df = context.table("testData2");
   DataFrame crosstab = df.stat().crosstab("a", "b");
   String[] columnNames = crosstab.schema().fieldNames();
   Assert.assertEquals("a_b", columnNames[0]);
   Assert.assertEquals("2", columnNames[1]);
   Assert.assertEquals("1", columnNames[2]);
   Row[] rows = crosstab.collect();
   Arrays.sort(rows, crosstabRowComparator);
   Integer count = 1;
   for (Row row : rows) {
     Assert.assertEquals(row.get(0).toString(), count.toString());
     Assert.assertEquals(1L, row.getLong(1));
     Assert.assertEquals(1L, row.getLong(2));
     count++;
   }
 }
  @Test
  public void testCountMinSketch() {
    DataFrame df = context.range(1000);

    CountMinSketch sketch1 = df.stat().countMinSketch("id", 10, 20, 42);
    Assert.assertEquals(sketch1.totalCount(), 1000);
    Assert.assertEquals(sketch1.depth(), 10);
    Assert.assertEquals(sketch1.width(), 20);

    CountMinSketch sketch2 = df.stat().countMinSketch(col("id"), 10, 20, 42);
    Assert.assertEquals(sketch2.totalCount(), 1000);
    Assert.assertEquals(sketch2.depth(), 10);
    Assert.assertEquals(sketch2.width(), 20);

    CountMinSketch sketch3 = df.stat().countMinSketch("id", 0.001, 0.99, 42);
    Assert.assertEquals(sketch3.totalCount(), 1000);
    Assert.assertEquals(sketch3.relativeError(), 0.001, 1e-4);
    Assert.assertEquals(sketch3.confidence(), 0.99, 5e-3);

    CountMinSketch sketch4 = df.stat().countMinSketch(col("id"), 0.001, 0.99, 42);
    Assert.assertEquals(sketch4.totalCount(), 1000);
    Assert.assertEquals(sketch4.relativeError(), 0.001, 1e-4);
    Assert.assertEquals(sketch4.confidence(), 0.99, 5e-3);
  }
  /** See SPARK-5904. Abstract vararg methods defined in Scala do not work in Java. */
  @Test
  public void testVarargMethods() {
    DataFrame df = context.table("testData");

    df.toDF("key1", "value1");

    df.select("key", "value");
    df.select(col("key"), col("value"));
    df.selectExpr("key", "value + 1");

    df.sort("key", "value");
    df.sort(col("key"), col("value"));
    df.orderBy("key", "value");
    df.orderBy(col("key"), col("value"));

    df.groupBy("key", "value").agg(col("key"), col("value"), sum("value"));
    df.groupBy(col("key"), col("value")).agg(col("key"), col("value"), sum("value"));
    df.agg(first("key"), sum("value"));

    df.groupBy().avg("key");
    df.groupBy().mean("key");
    df.groupBy().max("key");
    df.groupBy().min("key");
    df.groupBy().sum("key");

    // Varargs in column expressions
    df.groupBy().agg(countDistinct("key", "value"));
    df.groupBy().agg(countDistinct(col("key"), col("value")));
    df.select(coalesce(col("key")));

    // Varargs with mathfunctions
    DataFrame df2 = context.table("testData2");
    df2.select(exp("a"), exp("b"));
    df2.select(exp(log("a")));
    df2.select(pow("a", "a"), pow("b", 2.0));
    df2.select(pow(col("a"), col("b")), exp("b"));
    df2.select(sin("a"), acos("b"));

    df2.select(rand(), acos("b"));
    df2.select(col("*"), randn(5L));
  }
 @Test
 public void testCollectAndTake() {
   DataFrame df = context.table("testData").filter("key = 1 or key = 2 or key = 3");
   Assert.assertEquals(3, df.select("key").collectAsList().size());
   Assert.assertEquals(2, df.select("key").takeAsList(2).size());
 }
 @Test
 public void testExecution() {
   DataFrame df = context.table("testData").filter("key = 1");
   Assert.assertEquals(1, df.select("key").collect()[0].get(0));
 }
 @Test
 public void testCovariance() {
   DataFrame df = context.table("testData2");
   Double result = df.stat().cov("a", "b");
   Assert.assertTrue(Math.abs(result) < 1.0e-6);
 }
 @Test
 public void testCorrelation() {
   DataFrame df = context.table("testData2");
   Double pearsonCorr = df.stat().corr("a", "b", "pearson");
   Assert.assertTrue(Math.abs(pearsonCorr) < 1.0e-6);
 }