@Test public void testSparkSql() { repl.interpret("case class Person(name:String, age:Int)\n", context); repl.interpret( "val people = sc.parallelize(Seq(Person(\"moon\", 33), Person(\"jobs\", 51), Person(\"gates\", 51), Person(\"park\", 34)))\n", context); assertEquals(Code.SUCCESS, repl.interpret("people.take(3)", context).code()); if (getSparkVersionNumber() <= 11) { // spark 1.2 or later does not allow create multiple SparkContext in the same jvm // by default. // create new interpreter SparkInterpreter repl2 = new SparkInterpreter(getSparkTestProperties()); repl2.setInterpreterGroup(intpGroup); intpGroup.get("note").add(repl2); repl2.open(); repl2.interpret("case class Man(name:String, age:Int)", context); repl2.interpret( "val man = sc.parallelize(Seq(Man(\"moon\", 33), Man(\"jobs\", 51), Man(\"gates\", 51), Man(\"park\", 34)))", context); assertEquals(Code.SUCCESS, repl2.interpret("man.take(3)", context).code()); repl2.close(); } }
@Before public void setUp() throws Exception { tmpDir = new File( System.getProperty("java.io.tmpdir") + "/ZeppelinLTest_" + System.currentTimeMillis()); System.setProperty("zeppelin.dep.localrepo", tmpDir.getAbsolutePath() + "/local-repo"); tmpDir.mkdirs(); if (repl == null) { intpGroup = new InterpreterGroup(); intpGroup.put("note", new LinkedList<Interpreter>()); repl = new SparkInterpreter(getSparkTestProperties()); repl.setInterpreterGroup(intpGroup); intpGroup.get("note").add(repl); repl.open(); } context = new InterpreterContext( "note", "id", "title", "text", new AuthenticationInfo(), new HashMap<String, Object>(), new GUI(), new AngularObjectRegistry(intpGroup.getId(), null), new LocalResourcePool("id"), new LinkedList<InterpreterContextRunner>(), new InterpreterOutput( new InterpreterOutputListener() { @Override public void onAppend(InterpreterOutput out, byte[] line) {} @Override public void onUpdate(InterpreterOutput out, byte[] output) {} })); }
@Test public void shareSingleSparkContext() throws InterruptedException { // create another SparkInterpreter SparkInterpreter repl2 = new SparkInterpreter(getSparkTestProperties()); repl2.setInterpreterGroup(intpGroup); intpGroup.get("note").add(repl2); repl2.open(); assertEquals( Code.SUCCESS, repl.interpret("print(sc.parallelize(1 to 10).count())", context).code()); assertEquals( Code.SUCCESS, repl2.interpret("print(sc.parallelize(1 to 10).count())", context).code()); repl2.close(); }
@Test public void testEnableImplicitImport() { if (getSparkVersionNumber() >= 13) { // Set option of importing implicits to "true", and initialize new Spark repl Properties p = getSparkTestProperties(); p.setProperty("zeppelin.spark.importImplicit", "true"); SparkInterpreter repl2 = new SparkInterpreter(p); repl2.setInterpreterGroup(intpGroup); intpGroup.get("note").add(repl2); repl2.open(); String ddl = "val df = Seq((1, true), (2, false)).toDF(\"num\", \"bool\")"; assertEquals(Code.SUCCESS, repl2.interpret(ddl, context).code()); repl2.close(); } }
@Test public void testDisableImplicitImport() { if (getSparkVersionNumber() >= 13) { // Set option of importing implicits to "false", and initialize new Spark repl // this test should return error status when creating DataFrame from sequence Properties p = getSparkTestProperties(); p.setProperty("zeppelin.spark.importImplicit", "false"); SparkInterpreter repl2 = new SparkInterpreter(p); repl2.setInterpreterGroup(intpGroup); intpGroup.get("note").add(repl2); repl2.open(); String ddl = "val df = Seq((1, true), (2, false)).toDF(\"num\", \"bool\")"; assertEquals(Code.ERROR, repl2.interpret(ddl, context).code()); repl2.close(); } }