/**
   * Compute weight and add edge to the graph
   *
   * @param way
   * @param from
   * @param to
   */
  private void addEdge(Way way, Node from, Node to) {
    LatLon fromLL = from.getCoor();
    LatLon toLL = from.getCoor();
    if (fromLL == null || toLL == null) {
      return;
    }
    double length = fromLL.greatCircleDistance(toLL);

    OsmEdge edge = new OsmEdge(way, from, to);
    edge.setSpeed(12.1);
    graph.addEdge(from, to, edge);
    // weight = getWeight(way);
    double weight = getWeight(way, length);
    setWeight(edge, length);
    logger.debug(
        "edge for way "
            + way.getId()
            + "(from node "
            + from.getId()
            + " to node "
            + to.getId()
            + ") has weight: "
            + weight);
    ((DirectedWeightedMultigraph<Node, OsmEdge>) graph).setEdgeWeight(edge, weight);
  }
    E addEdge(V jtSource, V jtTarget) {
      E jtEdge = graph.getEdgeFactory().createEdge(jtSource, jtTarget);
      jtElementsBeingAdded.add(jtEdge);

      boolean added = graph.addEdge(jtSource, jtTarget, jtEdge);
      jtElementsBeingAdded.remove(jtEdge);

      return added ? jtEdge : null;
    }
  /**
   * Returns a graph, each vertex corresponding with an vector in R, and edges connecting vertices
   * (vectors) if they are obtuse or at right angles.
   *
   * @param TOL > 0 decides how close to zero is considered zero.
   */
  public static Graph<Matrix, DefaultEdge> obtuseConnectedGraph(Set<Matrix> R, double TOL) {
    Graph G = new SimpleGraph<>(DefaultEdge.class);
    for (Matrix v : R) G.addVertex(v); // graph contains the relevant vectors
    int N = R.size();
    Matrix[] b = new Matrix[N];
    R.toArray(b); // build an array with pointers to vectors in R (also vertices in G)

    // add edges between obtuse relevant vectors.
    for (int i = 0; i < N; i++)
      for (int j = i + 1; j < N; j++) if (dot(b[i], b[j]) < Math.abs(TOL)) G.addEdge(b[i], b[j]);

    return G;
  }
  /** {@inheritDoc} */
  public void generateGraph(
      Graph<V, E> target, final VertexFactory<V> vertexFactory, Map<String, V> resultMap) {
    if (size < 1) {
      return;
    }

    // A little trickery to intercept the rim generation.  This is
    // necessary since target may be initially non-empty, meaning we can't
    // rely on its vertex set after the rim is generated.
    final Collection<V> rim = new ArrayList<V>();
    VertexFactory<V> rimVertexFactory =
        new VertexFactory<V>() {
          public V createVertex() {
            V vertex = vertexFactory.createVertex();
            rim.add(vertex);

            return vertex;
          }
        };

    RingGraphGenerator<V, E> ringGenerator = new RingGraphGenerator<V, E>(size - 1);
    ringGenerator.generateGraph(target, rimVertexFactory, resultMap);

    V hubVertex = vertexFactory.createVertex();
    target.addVertex(hubVertex);

    if (resultMap != null) {
      resultMap.put(HUB_VERTEX, hubVertex);
    }

    for (V rimVertex : rim) {
      if (inwardSpokes) {
        target.addEdge(rimVertex, hubVertex);
      } else {
        target.addEdge(hubVertex, rimVertex);
      }
    }
  }
  @Override
  public <N extends Node, E extends Edge> Graph<N, E> createGraph(
      VertexFactory<N> vfac, EdgeFactory<N, E> efac) {
    Integer inp =
        InputDialog.getIntegerInput("Game Tree Factory", "No. of levels?", 2, Integer.MAX_VALUE);
    if (inp == null) {
      return null;
    }

    int levels = inp;
    final double levelSep = ((2 << levels - 1) * (5.0 + 5.0)) / (Math.PI * levels);
    final double shift = levels * levelSep;
    Graph<N, E> graph = new SimpleGraph<>(efac);
    List<N> parents = new LinkedList<>();
    List<N> children = new LinkedList<>();
    Node.PropChanger npr = Node.PropChanger.create();

    N n = vfac.createVertex();
    npr.setPosition(n, polarToCartesian(0, 0, shift));
    graph.addVertex(n);
    parents.add(n);

    for (int i = 1; i <= levels; i++) {
      final double curRadius = i * levelSep;
      double th = 0;
      final double thDelta = Math.PI / parents.size();

      for (N p : parents) {
        N c1 = vfac.createVertex();
        N c2 = vfac.createVertex();
        npr.setPosition(c1, polarToCartesian(curRadius, th + 0.5 * thDelta, shift));
        npr.setPosition(c2, polarToCartesian(curRadius, th + 1.5 * thDelta, shift));
        th += 2 * thDelta;
        graph.addVertex(c1);
        graph.addVertex(c2);
        graph.addEdge(p, c1);
        graph.addEdge(p, c2);
        children.add(c1);
        children.add(c2);
      }
      parents = children;
      children = new LinkedList<>();
    }

    return graph;
  }
  /** {@inheritDoc} */
  public void generateGraph(
      Graph<V, E> target, VertexFactory<V> vertexFactory, Map<String, V> resultMap) {
    if (size < 1) {
      return;
    }

    // Add all the vertices to the set
    for (int i = 0; i < size; i++) {
      V newVertex = vertexFactory.createVertex();
      target.addVertex(newVertex);
    }

    /*
     * We want two iterators over the vertex set, one fast and one slow.
     * The slow one will move through the set once. For each vertex,
     * the fast iterator moves through the set, adding an edge to all
     * vertices we haven't connected to yet.
     *
     * If we have an undirected graph, the second addEdge call will return
     * nothing; it will not add a second edge.
     */
    Iterator<V> slowI = target.vertexSet().iterator();
    Iterator<V> fastI;

    while (slowI.hasNext()) { // While there are more vertices in the set

      V latestVertex = slowI.next();
      fastI = target.vertexSet().iterator();

      // Jump to the first vertex *past* latestVertex
      while (fastI.next() != latestVertex) {;
      }

      // And, add edges to all remaining vertices
      V temp;
      while (fastI.hasNext()) {
        temp = fastI.next();
        target.addEdge(latestVertex, temp);
        target.addEdge(temp, latestVertex);
      }
    }
  }
  @Override
  public void generateGraph(
      Graph<V, E> veGraph, VertexFactory<V> vVertexFactory, Map<String, V> stringVMap) {

    Map<Integer, V> intToNodeMap = new HashMap<Integer, V>();

    for (Integer nodeID : selected.vertices.keySet()) {
      V node = vVertexFactory.createVertex();
      if (!veGraph.containsVertex(node)) veGraph.addVertex(node);
      intToNodeMap.put(nodeID, node);
    }

    for (PajekArc arc : selected.arcs) {
      V source = intToNodeMap.get(arc.source);
      V target = intToNodeMap.get(arc.target);
      E edge = null;
      if (!veGraph.containsEdge(source, target)) edge = veGraph.addEdge(source, target);
      else edge = veGraph.getEdge(source, target);

      if (veGraph instanceof WeightedGraph)
        ((WeightedGraph) veGraph).setEdgeWeight(edge, arc.weight);
    }
  }
  /** {@inheritDoc} */
  public void generateGraph(
      Graph<V, E> target, VertexFactory<V> vertexFactory, Map<String, V> resultMap) {
    V lastVertex = null;

    for (int i = 0; i < size; ++i) {
      V newVertex = vertexFactory.createVertex();
      target.addVertex(newVertex);

      if (lastVertex == null) {
        if (resultMap != null) {
          resultMap.put(START_VERTEX, newVertex);
        }
      } else {
        target.addEdge(lastVertex, newVertex);
      }

      lastVertex = newVertex;
    }

    if ((resultMap != null) && (lastVertex != null)) {
      resultMap.put(END_VERTEX, lastVertex);
    }
  }
Exemple #9
0
 public void addEdge(Edge toAdd) {
   myGraph.addEdge(toAdd.getSource(), toAdd.getDest(), toAdd);
 }
  /**
   * @param connectedOnly if true, the result will be a connected graph
   * @return
   */
  public Graph<V, E> toGraph() {
    if (subgraph != null) return subgraph;
    if (directed) {
      subgraph = new DirectedMultigraph<V, E>(g2.getEdgeFactory());
    } else {
      subgraph = new Multigraph<V, E>(g2.getEdgeFactory());
    }

    E edge;
    V source;
    V target;
    for (int x = 0; x < dimx; x++) {
      for (int y = 0; y < dimy; y++) {
        if (matrix[x][y]) {
          edge = edgeList2.get(y);
          source = g2.getEdgeSource(edge);
          target = g2.getEdgeTarget(edge);
          if (mappedVerticesFromG2.contains(source) && mappedVerticesFromG2.contains(target)) {
            // make sure the source and target vertices have been added, then add the edge
            subgraph.addVertex(source);
            subgraph.addVertex(target);
            subgraph.addEdge(source, target, edge);
          }
        }
      }
    }

    if (connectedOnly) {
      // make sure this subgraph is connected, if it is not return the largest connected part
      List<Set<V>> connectedVertices = new ArrayList<Set<V>>();
      for (V v : subgraph.vertexSet()) {
        if (!SharedStaticMethods.containsV(connectedVertices, v)) {
          connectedVertices.add(SharedStaticMethods.getConnectedVertices(subgraph, v));
        }
      }
      // ConnectedVertices now contains Sets of connected vertices every vertex of the subgraph is
      // contained exactly once in the list
      // if there is more then 1 set, then this method should return the largest connected part of
      // the graph
      if (connectedVertices.size() > 1) {
        Graph<V, E> largestResult = null;
        Graph<V, E> currentGraph;
        int largestSize = -1;
        Set<V> currentSet;
        for (int i = 0; i < connectedVertices.size(); i++) {
          currentSet = connectedVertices.get(i);
          /*note that 'subgraph' is the result from the Mcgregor algorithm, 'currentGraph' is an
           * induced subgraph of 'subgraph'. 'currentGraph' is connected, because the vertices in
           * 'currentSet' are connected with edges in 'subgraph'
           */
          currentGraph = new Subgraph<V, E, Graph<V, E>>(subgraph, currentSet);
          if (currentGraph.edgeSet().size() > largestSize) {
            largestResult = currentGraph;
          }
        }

        return largestResult;
      }
    }

    return subgraph;
  }