public void testUndirectedAdjacencyList() { UndirectedGraph<Integer, DefaultEdge> g = new Pseudograph<>(DefaultEdge.class); g.addVertex(1); g.addVertex(2); g.addVertex(3); g.addVertex(4); g.addVertex(5); g.addEdge(1, 2); g.addEdge(1, 3); g.addEdge(3, 1); g.addEdge(3, 4); g.addEdge(4, 5); g.addEdge(5, 1); g.addEdge(5, 2); g.addEdge(5, 3); g.addEdge(5, 4); g.addEdge(5, 5); g.addEdge(5, 5); CSVExporter<Integer, DefaultEdge> exporter = new CSVExporter<>(nameProvider, CSVFormat.ADJACENCY_LIST, ';'); StringWriter w = new StringWriter(); exporter.exportGraph(g, w); assertEquals(UNDIRECTED_ADJACENCY_LIST, w.toString()); }
public void testUndirected() { UndirectedGraph<String, DefaultEdge> g = new SimpleGraph<String, DefaultEdge>(DefaultEdge.class); g.addVertex(V1); g.addVertex(V2); g.addEdge(V1, V2); g.addVertex(V3); g.addEdge(V3, V1); StringWriter w = new StringWriter(); exporter.export(w, g); assertEquals(UNDIRECTED, w.toString()); }
public void testAdjacencyUndirected() { UndirectedGraph<String, DefaultEdge> g = new Pseudograph<String, DefaultEdge>(DefaultEdge.class); g.addVertex(V1); g.addVertex(V2); g.addEdge(V1, V2); g.addVertex(V3); g.addEdge(V3, V1); g.addEdge(V1, V1); StringWriter w = new StringWriter(); exporter.exportAdjacencyMatrix(w, g); assertEquals(UNDIRECTED_ADJACENCY, w.toString()); }
public void testLaplacian() { UndirectedGraph<String, DefaultEdge> g = new SimpleGraph<String, DefaultEdge>(DefaultEdge.class); g.addVertex(V1); g.addVertex(V2); g.addEdge(V1, V2); g.addVertex(V3); g.addEdge(V3, V1); StringWriter w = new StringWriter(); exporter.exportLaplacianMatrix(w, g); assertEquals(LAPLACIAN, w.toString()); w = new StringWriter(); exporter.exportNormalizedLaplacianMatrix(w, g); assertEquals(NORMALIZED_LAPLACIAN, w.toString()); }
/** * Compute the minimal triangulation of the graph. Implementation of Algorithm MCS-M+ as described * in Berry et al. (2010), DOI:10.3390/a3020197 <a href="http://www.mdpi.com/1999-4893/3/2/197"> * http://www.mdpi.com/1999-4893/3/2/197</a> */ private void computeMinimalTriangulation() { // initialize chordGraph with same vertices as graph chordalGraph = new SimpleGraph<>(graph.getEdgeFactory()); for (V v : graph.vertexSet()) { chordalGraph.addVertex(v); } // initialize g' as subgraph of graph (same vertices and edges) final UndirectedGraph<V, E> gprime = copyAsSimpleGraph(graph); int s = -1; generators = new ArrayList<>(); meo = new LinkedList<>(); final Map<V, Integer> vertexLabels = new HashMap<>(); for (V v : gprime.vertexSet()) { vertexLabels.put(v, 0); } for (int i = 1, n = graph.vertexSet().size(); i <= n; i++) { V v = getMaxLabelVertex(vertexLabels); LinkedList<V> Y = new LinkedList<>(Graphs.neighborListOf(gprime, v)); if (vertexLabels.get(v) <= s) { generators.add(v); } s = vertexLabels.get(v); // Mark x reached and all other vertices of gprime unreached HashSet<V> reached = new HashSet<>(); reached.add(v); // mark neighborhood of x reached and add to reach(label(y)) HashMap<Integer, HashSet<V>> reach = new HashMap<>(); // mark y reached and add y to reach for (V y : Y) { reached.add(y); addToReach(vertexLabels.get(y), y, reach); } for (int j = 0; j < graph.vertexSet().size(); j++) { if (!reach.containsKey(j)) { continue; } while (reach.get(j).size() > 0) { // remove a vertex y from reach(j) V y = reach.get(j).iterator().next(); reach.get(j).remove(y); for (V z : Graphs.neighborListOf(gprime, y)) { if (!reached.contains(z)) { reached.add(z); if (vertexLabels.get(z) > j) { Y.add(z); E fillEdge = graph.getEdgeFactory().createEdge(v, z); fillEdges.add(fillEdge); addToReach(vertexLabels.get(z), z, reach); } else { addToReach(j, z, reach); } } } } } for (V y : Y) { chordalGraph.addEdge(v, y); vertexLabels.put(y, vertexLabels.get(y) + 1); } meo.addLast(v); gprime.removeVertex(v); vertexLabels.remove(v); } }