public static void DFS( DoubleMatrix A, DoubleMatrix d, DoubleMatrix g, ArrayList[] V, int vertNum) { int krawedzie = 0; for (int i = 0; i <= vertNum; i++) { krawedzie += V[i].size(); } krawedzie /= 2; // System.out.println("A wymiar: " + A.columns + " rows: "+A.rows); int t = 0; VertexState state[] = new VertexState[(d.rows - 1) * d.rows / 2]; // tyle stanów for (int i = 0; i < d.rows - 1; i++) { for (int j = i + 1; j < d.columns; j++) { for (int x = 0; x < state.length; x++) { state[x] = VertexState.White; // na początku białe } g.put(t, 0, d.get(i, j)); runDFS(i, j, state, d, V, vertNum); for (int ii = 0; ii < krawedzie; ii++) { if (state[ii] == VertexState.Black) { A.put(t, ii, 1); } } t++; } } System.out.println(g); System.out.println("t:" + t); return; }
/** * 求广义逆矩阵 Theory:最大秩分解 U*S*Vt = A C=U*sqrt(S) D=sqrt(S)*Vt <==> A=C*D MP(A) = * D'*inv(D*D')*inv(C'*C)*C' * * @param ht * @return */ public DoubleMatrix getMPMatrix(DoubleMatrix ht) { int m = ht.rows; int n = ht.columns; DoubleMatrix[] USV = Singular.fullSVD(ht); DoubleMatrix U = USV[0]; double[] s_raw = USV[1].data.clone(); // 奇异值 // 去除0 int k = 0; while (k < s_raw.length && s_raw[k] > 0.1e-5) { k++; } double[] s = new double[k]; for (int i = 0; i < s.length; i++) { s[i] = s_raw[i]; } DoubleMatrix Vt = USV[2].transpose(); // n*n int sn = s.length; for (int i = 0; i < sn; i++) { s[i] = Math.sqrt(s[i]); } // 构造m*sn sn*n矩阵 DoubleMatrix S1 = new DoubleMatrix(m, sn); DoubleMatrix S2 = new DoubleMatrix(sn, n); for (int i = 0; i < sn; i++) { S1.put(i, i, s[i]); S2.put(i, i, s[i]); } DoubleMatrix C = U.mmul(S1); DoubleMatrix D = S2.mmul(Vt); DoubleMatrix DT = D.transpose(); DoubleMatrix DD = D.mmul(DT); DoubleMatrix invDD = inverse(DD); DoubleMatrix DDD = DT.mmul(invDD); DoubleMatrix CT = C.transpose(); DoubleMatrix CC = CT.mmul(C); DoubleMatrix invCC = inverse(CC); DoubleMatrix CCC = invCC.mmul(CT); DoubleMatrix Ainv = DDD.mmul(CCC); return Ainv; }
/** * Loads ground truth responses * * @param groundTruth is a Map from questions to responses */ public void setGroundTruth(Map<TypeQ, TypeR> groundTruth) { log.debug("Setting ground truth..."); if (!(categToInt != null)) log.error("Result Vector not computed."); assert categToInt != null : "Result Vector not computed."; DoubleMatrix indicator = DoubleMatrix.zeros(sortedQuestions.size()); DoubleMatrix gtVec = DoubleMatrix.zeros(sortedQuestions.size()); int idx = 0; for (TypeQ iter : sortedQuestions) { if (groundTruth.containsKey(iter)) { indicator.put(idx, 1.0d); gtVec.put(idx, categToInt.get(groundTruth.get(iter))); } idx++; } groundTruthVector = new Pair<DoubleMatrix, DoubleMatrix>(gtVec, indicator); }
public static void main(String argv[]) { modshogun.init_shogun_with_defaults(); int dim = 7; DoubleMatrix data = DoubleMatrix.rand(dim, dim); RealFeatures feats = new RealFeatures(data); DoubleMatrix data_T = data.transpose(); DoubleMatrix symdata = data.add(data_T); int cols = (1 + dim) * dim / 2; DoubleMatrix lowertriangle = DoubleMatrix.zeros(1, cols); int count = 0; for (int i = 0; i < dim; i++) { for (int j = 0; j < dim; j++) { if (j <= i) { lowertriangle.put(0, count++, symdata.get(i, j)); } } } CustomKernel kernel = new CustomKernel(); kernel.set_triangle_kernel_matrix_from_triangle(lowertriangle); DoubleMatrix km_triangletriangle = kernel.get_kernel_matrix(); kernel.set_triangle_kernel_matrix_from_full(symdata); DoubleMatrix km_fulltriangle = kernel.get_kernel_matrix(); kernel.set_full_kernel_matrix_from_full(data); DoubleMatrix km_fullfull = kernel.get_kernel_matrix(); modshogun.exit_shogun(); }
public DoubleMatrix getScoreMatrix(File file) { Counter<String> docWords = new Counter<String>(); try { LineIterator iter = FileUtils.lineIterator(file); while (iter.hasNext()) { Tokenizer t = tokenizerFactory.create((new InputHomogenization(iter.nextLine()).transform())); while (t.hasMoreTokens()) { docWords.incrementCount(t.nextToken(), 1.0); } } iter.close(); } catch (IOException e) { throw new IllegalStateException("Unable to read file", e); } DoubleMatrix ret = new DoubleMatrix(1, currVocab.size()); for (int i = 0; i < currVocab.size(); i++) { if (docWords.getCount(currVocab.get(i).toString()) > 0) { ret.put(i, wordScores.getCount(currVocab.get(i).toString())); } } return ret; }
private static void modi(DoubleMatrix syndrome, int radix) { for (int i = 0; i < syndrome.getRows(); i++) { for (int j = 0; j < syndrome.getColumns(); j++) { syndrome.put(i, j, ((int) syndrome.get(i, j)) % radix); } } }
/** * Loads tune responses * * @param tuneSet is a Map from questions to responses */ public void setTune(Map<TypeQ, TypeR> tuneSet) { log.debug("Setting tune set..."); if (!(categToInt != null)) log.error("Result Vector not computed."); assert categToInt != null : "Result Vector not computed."; DoubleMatrix indicator = DoubleMatrix.zeros(sortedQuestions.size()); DoubleMatrix tuneVec = DoubleMatrix.zeros(sortedQuestions.size()); int idx = 0; for (TypeQ iter : sortedQuestions) { if (tuneSet.containsKey(iter)) { indicator.put(idx, 1.0d); tuneVec.put(idx, categToInt.get(tuneSet.get(iter))); } idx++; } tuneVector = new Pair<DoubleMatrix, DoubleMatrix>(tuneVec, indicator); }
/** * 对角线增加值 * * @param matrix * @throws Exception */ private void addPositiveValue(DoubleMatrix matrix) { int m = matrix.rows; if (matrix.columns != m) return; for (int i = 0; i < m; i++) { matrix.put(i, i, matrix.get(i, i) + Math.random()); } }
/** * 求逆矩阵 * * @param mt * @return */ public DoubleMatrix inverse(DoubleMatrix mt) { int m = mt.rows; DoubleMatrix E = DoubleMatrix.zeros(m, m); for (int i = 0; i < m; i++) { E.put(i, i, 1); } return Solve.solve(mt, E); }
/** * Transforms the matrix * * @param text * @return */ @Override public DoubleMatrix transform(String text) { Tokenizer tokenizer = tokenizerFactory.create(text); List<String> tokens = tokenizer.getTokens(); DoubleMatrix input = new DoubleMatrix(1, vocab.size()); for (int i = 0; i < tokens.size(); i++) { int idx = vocab.indexOf(tokens.get(i)); if (vocab.indexOf(tokens.get(i)) >= 0) input.put(idx, wordCounts.getCount(tokens.get(i))); } return input; }
public void reduce( IntWritable sameNum, Iterator<Text> data, OutputCollector<Text, jBLASArrayWritable> output, Reporter reporter) throws IOException { int totalBatchCount = exampleCount / batchSize; DoubleMatrix weights = DoubleMatrix.randn(hiddenNodes, visibleNodes); DoubleMatrix hbias = DoubleMatrix.zeros(hiddenNodes); DoubleMatrix vbias = DoubleMatrix.zeros(visibleNodes); DoubleMatrix label = DoubleMatrix.zeros(1); DoubleMatrix hidden_chain = null; DoubleMatrix vdata = DoubleMatrix.zeros(batchSize, visibleNodes); ArrayList<DoubleMatrix> outputmatricies = new ArrayList<DoubleMatrix>(); outputmatricies.add(weights); outputmatricies.add(hbias); outputmatricies.add(vbias); outputmatricies.add(label); outputmatricies.add(vdata); outputmatricies.add(hidden_chain); int j; for (int i = 0; i < totalBatchCount; i++) { j = 0; while (data.hasNext() && j < batchSize) { j++; StringTokenizer tk = new StringTokenizer(data.next().toString()); label.put(0, Double.parseDouble(tk.nextToken())); String image = tk.nextToken(); for (int k = 0; k < image.length(); k++) { Integer val = new Integer(image.charAt(k)); vdata.put(j, k, val.doubleValue()); } dataArray = new jBLASArrayWritable(outputmatricies); batchID.set("1\t" + i); output.collect(batchID, dataArray); } } }
public static DoubleMatrix conv2d(DoubleMatrix input, DoubleMatrix kernel, Type type) { DoubleMatrix xShape = new DoubleMatrix(1, 2); xShape.put(0, input.rows); xShape.put(1, input.columns); DoubleMatrix yShape = new DoubleMatrix(1, 2); yShape.put(0, kernel.rows); yShape.put(1, kernel.columns); DoubleMatrix zShape = xShape.addi(yShape).subi(1); int retRows = (int) zShape.get(0); int retCols = (int) zShape.get(1); ComplexDoubleMatrix fftInput = complexDisceteFourierTransform(input, retRows, retCols); ComplexDoubleMatrix fftKernel = complexDisceteFourierTransform(kernel, retRows, retCols); ComplexDoubleMatrix mul = fftKernel.muli(fftInput); ComplexDoubleMatrix retComplex = complexInverseDisceteFourierTransform(mul); DoubleMatrix ret = retComplex.getReal(); if (type == Type.VALID) { DoubleMatrix validShape = xShape.subi(yShape).addi(1); DoubleMatrix start = zShape.subi(validShape).divi(2); DoubleMatrix end = start.addi(validShape); if (start.get(0) < 1 || start.get(1) < 1) throw new IllegalStateException("Illegal row index " + start); if (end.get(0) < 1 || end.get(1) < 1) throw new IllegalStateException("Illegal column index " + end); ret = ret.get( RangeUtils.interval((int) start.get(0), (int) end.get(0)), RangeUtils.interval((int) start.get(1), (int) end.get(1))); } return ret; }
/** * Vectorizes the passed in text treating it as one document * * @param text the text to vectorize * @param label the label of the text * @return a dataset with a applyTransformToDestination of weights(relative to impl; could be word * counts or tfidf scores) */ @Override public DataSet vectorize(String text, String label) { Tokenizer tokenizer = tokenizerFactory.create(text); List<String> tokens = tokenizer.getTokens(); DoubleMatrix input = new DoubleMatrix(1, vocab.size()); for (int i = 0; i < tokens.size(); i++) { int idx = vocab.indexOf(tokens.get(i)); if (vocab.indexOf(tokens.get(i)) >= 0) input.put(idx, wordCounts.getCount(tokens.get(i))); } DoubleMatrix labelMatrix = MatrixUtil.toOutcomeVector(labels.indexOf(label), labels.size()); return new DataSet(input, labelMatrix); }
/** Computes results as a vector of type DoubleMatrix */ public void computeComparableResultVector() { log.info("Computing comparable result vector..."); if (!(sortedRePrPairs != null)) log.error("Attempted to compute results vector before results."); assert sortedRePrPairs != null : "Attempted to compute results vector before results."; categToInt = new HashMap<TypeR, Integer>(); resultVector = DoubleMatrix.zeros(sortedQuestions.size()); categoriesMat = DoubleMatrix.zeros(responseCategories.size()); int temp = 1; for (TypeR iter : responseCategories) { categToInt.put(iter, temp); categoriesMat.put(temp - 1, temp); temp++; } if (log.isDebugEnabled()) log.debug("Computed map from categories to integers:\n" + categToInt); temp = 0; for (Pair<TypeR, Double> iter : sortedRePrPairs) { resultVector.put(temp, categToInt.get(iter.getFirst())); temp++; } if (log.isDebugEnabled()) log.debug("Computed results vector:\n" + resultVector); log.info("Computed result vector."); }
public static DoubleMatrix readFileIntoMatrix(String filename, char delimiter) throws IOException { File csvData = new File(filename); CSVFormat format = CSVFormat.DEFAULT.withHeader().withDelimiter(delimiter); CSVParser parser = CSVParser.parse(csvData, StandardCharsets.UTF_8, format); int row = 0; List<CSVRecord> records = parser.getRecords(); DoubleMatrix x = new DoubleMatrix(records.size(), records.get(0).size()); for (CSVRecord csvRecord : records) { for (int column = 0; column < csvRecord.size(); column++) { String s = csvRecord.get(column); x.put(row, column, Double.valueOf(s)); } row++; } return x; }
/** 文件载入矩阵 */ private DoubleMatrix loadMatrix(String trainSetPath, int rowNum, int colNum) throws IOException { BufferedReader br = new BufferedReader(new FileReader(new File(trainSetPath))); // 第一行为文件信息 DoubleMatrix matrix = new DoubleMatrix(rowNum, colNum); String lineStr = ""; for (int i = 0; i < rowNum; i++) { lineStr = br.readLine(); if (lineStr.startsWith("#") || "".equals(lineStr)) { continue; } String[] strings = lineStr.split(","); for (int j = 0; j < colNum; j++) { matrix.put(i, j, Double.parseDouble(strings[j])); } } br.close(); return matrix; }
/** 训练模型 */ private void train() { printInfo("训练数据载入完毕,开始训练模型………………训练数据规模" + train_set.rows + "x" + train_set.columns); // 输入矩阵初始化 横向即每列为一组输入 /* * 4 8 …… N * * 1 5 …… N * 2 6 …… N * 3 7 …… N */ P = new DoubleMatrix(NumberofInputNeurons, train_data_Count); // 测试机输出矩阵 横向 T = new DoubleMatrix(NumberofOutputNeurons, train_data_Count); // 初始化 for (int i = 0; i < train_data_Count; i++) { for (int j = 0; j < totalColCount; j++) { if (j < NumberofInputNeurons) { // 输入部分 P.put(j, i, train_set.get(i, j)); } else { T.put(j - NumberofInputNeurons, i, train_set.get(i, j)); } } } printInfo("训练矩阵初始化完毕………………开始隐含层神经元权重与阈值"); // end 初始化 long start_time_train = System.currentTimeMillis(); // 随机初始化输入权值矩阵 // 行数为隐含层神经元个数,列数为输入层神经元 /** * W11 W12 W13(第一个隐含神经元对应各输入的权值) W21 W22 W23(第二个隐含神经元对应各输入的权值) ………………………………(第N个隐含神经元对应各输入的权值) */ InputWeight = DoubleMatrix.rand(NumberofHiddenNeurons, NumberofInputNeurons); // 初始化阈值 BiasofHiddenNeurons = DoubleMatrix.rand(NumberofHiddenNeurons, 1); printInfo("隐含层神经元权重与阈值初始化完毕………………开始计算输入权重"); DoubleMatrix tmpH = new DoubleMatrix(NumberofHiddenNeurons, train_data_Count); tmpH = InputWeight.mmul(P); printInfo("输入矩阵计算权重完毕………………开始计算输入权重"); // 加阈值 // 注意横向问题 for (int i = 0; i < NumberofHiddenNeurons; i++) { for (int j = 0; j < train_data_Count; j++) { tmpH.put(i, j, tmpH.get(i, j) + BiasofHiddenNeurons.get(i, 0)); } } printInfo("输入矩阵计算阈值完毕………………开始计算输入激活函数"); // 输出矩阵 DoubleMatrix H = new DoubleMatrix(NumberofHiddenNeurons, train_data_Count); if (func.startsWith("sig")) { for (int i = 0; i < NumberofHiddenNeurons; i++) { for (int j = 0; j < train_data_Count; j++) { double tmp = tmpH.get(i, j); tmp = 1.0f / (1 + Math.exp(-tmp)); H.put(i, j, tmp); } } } else { throw new IllegalArgumentException("不支持的激活函数类型"); } printInfo("输出矩阵计算激活函数完毕,开始求解广义逆………………矩阵规模" + H.columns + "x" + H.rows); // 将H转置 DoubleMatrix Ht = H.transpose(); // 求广义逆 DoubleMatrix Ht_MP = getMPMatrix(Ht); printInfo("输出矩阵广义逆求解完毕………………开始求解输出矩阵权重"); // 隐含层输出权重矩阵= Ht_MP * Tt OutputWeight = Ht_MP.mmul(T.transpose()); printInfo("输出矩阵权重求解完毕………………"); long end_time_train = System.currentTimeMillis(); TrainingTime = (end_time_train - start_time_train) * 1.0f / 1000; printInfo("模型训练完毕………………开始评估模型"); // 误差评估 DoubleMatrix Yt = new DoubleMatrix(train_data_Count, NumberofOutputNeurons); Yt = Ht.mmul(OutputWeight); double MSE = 0; printInfo("共有" + NumberofOutputNeurons + "个输出值"); for (int out = 0; out < NumberofOutputNeurons; out++) { printInfo("计算第" + (out + 1) + "个输出值"); double mseTem = 0.0; for (int i = 0; i < train_data_Count; i++) { System.out.println(Yt.get(i, out) + " " + T.get(out, i)); mseTem += (Yt.get(i, out) - T.get(out, i)) * (Yt.get(i, out) - T.get(out, i)); } printInfo( "第" + NumberofOutputNeurons + "个输出值计算完毕,MSE=" + Math.sqrt(mseTem / train_data_Count)); MSE += mseTem; } TrainingAccuracy = Math.sqrt(MSE / train_data_Count); printInfo("模型评估完毕………………"); }
private void costantiniUnwrap() throws LPException { final int ny = wrappedPhase.rows - 1; // start from Zero! final int nx = wrappedPhase.columns - 1; // start from Zero! if (wrappedPhase.isVector()) throw new IllegalArgumentException("Input must be 2D array"); if (wrappedPhase.rows < 2 || wrappedPhase.columns < 2) throw new IllegalArgumentException("Size of input must be larger than 2"); // Default weight DoubleMatrix w1 = DoubleMatrix.ones(ny + 1, 1); w1.put(0, 0.5); w1.put(w1.length - 1, 0.5); DoubleMatrix w2 = DoubleMatrix.ones(1, nx + 1); w2.put(0, 0.5); w2.put(w2.length - 1, 0.5); DoubleMatrix weight = w1.mmul(w2); DoubleMatrix i, j, I_J, IP1_J, I_JP1; DoubleMatrix Psi1, Psi2; DoubleMatrix[] ROWS; // Compute partial derivative Psi1, eqt (1,3) i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1]); IP1_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0].add(1), ROWS[1]); Psi1 = JblasUtils.getMatrixFromIdx(wrappedPhase, IP1_J) .sub(JblasUtils.getMatrixFromIdx(wrappedPhase, I_J)); Psi1 = UnwrapUtils.wrapDoubleMatrix(Psi1); // Compute partial derivative Psi2, eqt (2,4) i = intRangeDoubleMatrix(0, ny); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1].add(1)); Psi2 = JblasUtils.getMatrixFromIdx(wrappedPhase, I_JP1) .sub(JblasUtils.getMatrixFromIdx(wrappedPhase, I_J)); Psi2 = UnwrapUtils.wrapDoubleMatrix(Psi2); // Compute beq DoubleMatrix beq = DoubleMatrix.zeros(ny, nx); i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(Psi1.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(Psi1.rows, ROWS[0], ROWS[1].add(1)); beq.addi(JblasUtils.getMatrixFromIdx(Psi1, I_JP1).sub(JblasUtils.getMatrixFromIdx(Psi1, I_J))); I_J = JblasUtils.sub2ind(Psi2.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(Psi2.rows, ROWS[0].add(1), ROWS[1]); beq.subi(JblasUtils.getMatrixFromIdx(Psi2, I_JP1).sub(JblasUtils.getMatrixFromIdx(Psi2, I_J))); beq.muli(-1 / (2 * Constants._PI)); for (int k = 0; k < beq.length; k++) { beq.put(k, Math.round(beq.get(k))); } beq.reshape(beq.length, 1); logger.debug("Constraint matrix"); i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); DoubleMatrix ROW_I_J = JblasUtils.sub2ind(i.length, ROWS[0], ROWS[1]); int nS0 = nx * ny; // Use by S1p, S1m DoubleMatrix[] COLS; COLS = grid2D(i, j); DoubleMatrix COL_IJ_1 = JblasUtils.sub2ind(i.length, COLS[0], COLS[1]); COLS = grid2D(i, j.add(1)); DoubleMatrix COL_I_JP1 = JblasUtils.sub2ind(i.length, COLS[0], COLS[1]); int nS1 = (nx + 1) * (ny); // SOAPBinding.Use by S2p, S2m COLS = grid2D(i, j); DoubleMatrix COL_IJ_2 = JblasUtils.sub2ind(i.length + 1, COLS[0], COLS[1]); COLS = grid2D(i.add(1), j); DoubleMatrix COL_IP1_J = JblasUtils.sub2ind(i.length + 1, COLS[0], COLS[1]); int nS2 = nx * (ny + 1); // Equality constraint matrix (Aeq) /* S1p = + sparse(ROW_I_J, COL_I_JP1,1,nS0,nS1) ... - sparse(ROW_I_J, COL_IJ_1,1,nS0,nS1); S1m = -S1p; S2p = - sparse(ROW_I_J, COL_IP1_J,1,nS0,nS2) ... + sparse(ROW_I_J, COL_IJ_2,1,nS0,nS2); S2m = -S2p; */ // ToDo: Aeq matrix should be sparse from it's initialization, look into JblasMatrix factory for // howto // ...otherwise even a data set of eg 40x40 pixels will exhaust heap: // ... dimension of Aeq (equality constraints) matrix for 30x30 input is 1521x6240 matrix // ... dimension of Aeq ( ) matrix for 50x50 input is 2401x9800 // ... dimension of Aeq ( ) matrix for 512x512 input is 261121x1046528 DoubleMatrix S1p = JblasUtils.setUpMatrixFromIdx(nS0, nS1, ROW_I_J, COL_I_JP1) .sub(JblasUtils.setUpMatrixFromIdx(nS0, nS1, ROW_I_J, COL_IJ_1)); DoubleMatrix S1m = S1p.neg(); DoubleMatrix S2p = JblasUtils.setUpMatrixFromIdx(nS0, nS2, ROW_I_J, COL_IP1_J) .neg() .add(JblasUtils.setUpMatrixFromIdx(nS0, nS2, ROW_I_J, COL_IJ_2)); DoubleMatrix S2m = S2p.neg(); DoubleMatrix Aeq = concatHorizontally(concatHorizontally(S1p, S1m), concatHorizontally(S2p, S2m)); final int nObs = Aeq.columns; final int nUnkn = Aeq.rows; DoubleMatrix c1 = JblasUtils.getMatrixFromRange(0, ny, 0, weight.columns, weight); DoubleMatrix c2 = JblasUtils.getMatrixFromRange(0, weight.rows, 0, nx, weight); c1.reshape(c1.length, 1); c2.reshape(c2.length, 1); DoubleMatrix cost = DoubleMatrix.concatVertically( DoubleMatrix.concatVertically(c1, c1), DoubleMatrix.concatVertically(c2, c2)); logger.debug("Minimum network flow resolution"); StopWatch clockLP = new StopWatch(); LinearProgram lp = new LinearProgram(cost.data); lp.setMinProblem(true); boolean[] integerBool = new boolean[nObs]; double[] lowerBound = new double[nObs]; double[] upperBound = new double[nObs]; for (int k = 0; k < nUnkn; k++) { lp.addConstraint(new LinearEqualsConstraint(Aeq.getRow(k).toArray(), beq.get(k), "cost")); } for (int k = 0; k < nObs; k++) { integerBool[k] = true; lowerBound[k] = 0; upperBound[k] = 99999; } // setup bounds and integer nature lp.setIsinteger(integerBool); lp.setUpperbound(upperBound); lp.setLowerbound(lowerBound); LinearProgramSolver solver = SolverFactory.newDefault(); // double[] solution; // solution = solver.solve(lp); DoubleMatrix solution = new DoubleMatrix(solver.solve(lp)); clockLP.stop(); logger.debug("Total GLPK time: {} [sec]", (double) (clockLP.getElapsedTime()) / 1000); // Displatch the LP solution int offset; int[] idx1p = JblasUtils.intRangeIntArray(0, nS1 - 1); DoubleMatrix x1p = solution.get(idx1p); x1p.reshape(ny, nx + 1); offset = idx1p[nS1 - 1] + 1; int[] idx1m = JblasUtils.intRangeIntArray(offset, offset + nS1 - 1); DoubleMatrix x1m = solution.get(idx1m); x1m.reshape(ny, nx + 1); offset = idx1m[idx1m.length - 1] + 1; int[] idx2p = JblasUtils.intRangeIntArray(offset, offset + nS2 - 1); DoubleMatrix x2p = solution.get(idx2p); x2p.reshape(ny + 1, nx); offset = idx2p[idx2p.length - 1] + 1; int[] idx2m = JblasUtils.intRangeIntArray(offset, offset + nS2 - 1); DoubleMatrix x2m = solution.get(idx2m); x2m.reshape(ny + 1, nx); // Compute the derivative jumps, eqt (20,21) DoubleMatrix k1 = x1p.sub(x1m); DoubleMatrix k2 = x2p.sub(x2m); // (?) Round to integer solution if (roundK == true) { for (int idx = 0; idx < k1.length; idx++) { k1.put(idx, FastMath.floor(k1.get(idx))); } for (int idx = 0; idx < k2.length; idx++) { k2.put(idx, FastMath.floor(k2.get(idx))); } } // Sum the jumps with the wrapped partial derivatives, eqt (10,11) k1.reshape(ny, nx + 1); k2.reshape(ny + 1, nx); k1.addi(Psi1.div(Constants._TWO_PI)); k2.addi(Psi2.div(Constants._TWO_PI)); // Integrate the partial derivatives, eqt (6) // cumsum() method in JblasTester -> see cumsum_demo() in JblasTester.cumsum_demo() DoubleMatrix k2_temp = DoubleMatrix.concatHorizontally(DoubleMatrix.zeros(1), k2.getRow(0)); k2_temp = JblasUtils.cumsum(k2_temp, 1); DoubleMatrix k = DoubleMatrix.concatVertically(k2_temp, k1); k = JblasUtils.cumsum(k, 1); // Unwrap - final solution unwrappedPhase = k.mul(Constants._TWO_PI); }
public void model( final SLCImage master, final SLCImage slave, Orbit masterOrbit, Orbit slaveOrbit) throws Exception { if (!masterOrbit.isInterpolated()) { logger.debug("Baseline cannot be computed, master orbit not initialized."); throw new Exception("Baseline.model_parameters: master orbit not initialized"); } else if (!slaveOrbit.isInterpolated()) { logger.debug("Baseline cannot be computed, slave orbit not initialized."); throw new Exception("Baseline.model_parameters: slave orbit not initialized"); } if (isInitialized) { logger.warn("baseline already isInitialized??? (returning)"); return; } masterWavelength = master.getRadarWavelength(); // Model r = nearRange + drange_dp*p -- p starts at 1 nearRange = master.pix2range(1.0); drange_dp = master.pix2range(2.0) - master.pix2range(1.0); nearRange -= drange_dp; // -- p starts at 1 // Set min/maxima for normalization linMin = master.currentWindow.linelo; // also used during polyval... linMax = master.currentWindow.linehi; pixMin = master.currentWindow.pixlo; pixMax = master.currentWindow.pixhi; hMin = 0.0; hMax = 5000.0; // Loop counters and sampling int cnt = 0; // matrix index final double deltaPixels = master.currentWindow.pixels() / N_POINTS_RNG; final double deltaLines = master.currentWindow.lines() / N_POINTS_AZI; final double deltaHeight = (hMax - hMin) / N_HEIGHTS; // Declare matrices for modeling Bperp // Note: for stability of normalmatrix, fill aMatrix with normalized line, etc. // perpendicular baseline DoubleMatrix bPerpMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, 1); // parallel baseline DoubleMatrix bParMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, 1); // viewing angle DoubleMatrix thetaMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, 1); // incidence angle DoubleMatrix thetaIncMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, 1); // design matrix DoubleMatrix aMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, numCoeffs); // Loop over heights(k), lines(i), pixels(j) to estimate baseline // height levels for (long k = 0; k < N_HEIGHTS; ++k) { final double height = hMin + k * deltaHeight; // azimuth direction for (long i = 0; i < N_POINTS_AZI; ++i) { final double line = master.currentWindow.linelo + i * deltaLines; Point pointOnEllips; // point, returned by lp2xyz double sTazi, sTrange; // Azimuth time for this line final double mTazi = master.line2ta(line); // xyz for master satellite from time final Point pointOnMasterOrb = masterOrbit.getXYZ(mTazi); // Continue looping in range direction for (long j = 0; j < N_POINTS_RNG; ++j) { final double pixel = master.currentWindow.pixlo + j * deltaPixels; // ______ Range time for this pixel ______ // final double m_trange = master.pix2tr(pixel); pointOnEllips = masterOrbit.lph2xyz(line, pixel, height, master); // Compute xyz for slave satellite from pointOnEllips Point pointTime = slaveOrbit.xyz2t(pointOnEllips, slave); sTazi = pointTime.y; sTrange = pointTime.x; // Slave position final Point pointOnSlaveOrb = slaveOrbit.getXYZ(sTazi); // Compute angle between near parallel orbits final Point velOnMasterOrb = masterOrbit.getXYZDot(mTazi); final Point velOnSlaveOrb = slaveOrbit.getXYZDot(sTazi); final double angleOrbits = velOnMasterOrb.angle(velOnSlaveOrb); logger.debug( "Angle between orbits master-slave (at l,p= " + line + "," + pixel + ") = " + rad2deg(angleOrbits) + " [deg]"); // Note: convergence assumed constant! orbitConvergence = angleOrbits; // final heading = angle(velOnMasterOrb,[1 0 0]) //? // orbitHeading = 0.0; // not yet used // The baseline parameters, derived from the positions (x,y,z) // alpha is angle counterclockwize(b, plane with normal=rho1=rho2) // theta is angle counterclockwize(rho1 = pointOnMasterOrb, r1 = pointOnMasterOrb - // pointOnEllips, r2 = pointOnSlaveOrb - pointOnEllips) // construct helper class BaselineComponents baselineComponents = new BaselineComponents().invoke(); compute_B_Bpar_Bperp_Theta( baselineComponents, pointOnEllips, pointOnMasterOrb, pointOnSlaveOrb); final double b = baselineComponents.getB(); final double bPar = baselineComponents.getBpar(); final double bPerp = baselineComponents.getBperp(); final double theta = baselineComponents.getTheta(); final double thetaInc = computeIncAngle(pointOnMasterOrb, pointOnEllips); // [rad]!!! // Modelling of bPerp(l,p) = a00 + a10*l + a01*p bPerpMatrix.put(cnt, 0, bPerp); bParMatrix.put(cnt, 0, bPar); thetaMatrix.put(cnt, 0, theta); thetaIncMatrix.put(cnt, 0, thetaInc); // --- b(l,p,h) = a000 + // a100*l + a010*p + a001*h + // a110*l*p + a101*l*h + a011*p*h + // a200*l^2 + a020*p^2 + a002*h^2 aMatrix.put(cnt, 0, 1.0); aMatrix.put(cnt, 1, normalize2(line, linMin, linMax)); aMatrix.put(cnt, 2, normalize2(pixel, pixMin, pixMax)); aMatrix.put(cnt, 3, normalize2(height, hMin, hMax)); aMatrix.put(cnt, 4, normalize2(line, linMin, linMax) * normalize2(pixel, pixMin, pixMax)); aMatrix.put(cnt, 5, normalize2(line, linMin, linMax) * normalize2(height, hMin, hMax)); aMatrix.put(cnt, 6, normalize2(pixel, pixMin, pixMax) * normalize2(height, hMin, hMax)); aMatrix.put(cnt, 7, sqr(normalize2(line, linMin, linMax))); aMatrix.put(cnt, 8, sqr(normalize2(pixel, pixMin, pixMax))); aMatrix.put(cnt, 9, sqr(normalize2(height, hMin, hMax))); cnt++; // b/alpha representation of baseline final double alpha = (bPar == 0 && bPerp == 0) ? Double.NaN : theta - Math.atan2(bPar, bPerp); // sign ok atan2 // horizontal/vertical representation of baseline final double bH = b * Math.cos(alpha); // sign ok final double bV = b * Math.sin(alpha); // sign ok // TODO: check sign of infinity!!! // Height ambiguity: [h] = -lambda/4pi * (r1sin(theta)/bPerp) * phi==2pi final double hAmbiguity = (bPerp == 0) ? Double.POSITIVE_INFINITY : -master.getRadarWavelength() * (pointOnMasterOrb.min(pointOnEllips)).norm() * Math.sin(theta) / (2.0 * bPerp); // Some extra info if in DEBUG unwrapMode logger.debug( "The baseline parameters for (l,p,h) = " + line + ", " + pixel + ", " + height); logger.debug("\talpha (deg), BASELINE: \t" + rad2deg(alpha) + " \t" + b); logger.debug("\tbPar, bPerp: \t" + bPar + " \t" + bPerp); logger.debug("\tbH, bV: \t" + bH + " \t" + bV); logger.debug("\tHeight ambiguity: \t" + hAmbiguity); logger.debug("\ttheta (deg): \t" + rad2deg(theta)); logger.debug("\tthetaInc (deg): \t" + rad2deg(thetaInc)); logger.debug("\tpointOnMasterOrb (x,y,z) = " + pointOnMasterOrb.toString()); logger.debug("\tpointOnSlaveOrb (x,y,z) = " + pointOnSlaveOrb.toString()); logger.debug("\tpointOnEllips (x,y,z) = " + pointOnEllips.toString()); } // loop pixels } // loop lines } // loop heights // Model all Baselines as 2d polynomial of degree 1 DoubleMatrix nMatrix = matTxmat(aMatrix, aMatrix); DoubleMatrix rhsBperp = matTxmat(aMatrix, bPerpMatrix); DoubleMatrix rhsBpar = matTxmat(aMatrix, bParMatrix); DoubleMatrix rhsTheta = matTxmat(aMatrix, thetaMatrix); DoubleMatrix rhsThetaInc = matTxmat(aMatrix, thetaIncMatrix); // DoubleMatrix Qx_hat = nMatrix; final DoubleMatrix Qx_hat = LinearAlgebraUtils.invertChol(Decompose.cholesky(nMatrix).transpose()); // TODO: refactor to _internal_ cholesky decomposition // choles(Qx_hat); // Cholesky factorisation normalmatrix // solvechol(Qx_hat,rhsBperp); // Solution Bperp coefficients in rhsB // solvechol(Qx_hat,rhsBpar); // Solution Theta coefficients in rhsTheta // solvechol(Qx_hat,rhsTheta); // Solution Theta coefficients in rhsTheta // solvechol(Qx_hat,rhsThetaInc); // Solution Theta_inc coefficients in rhsThetaInc // invertchol(Qx_hat); // Covariance matrix of normalized unknowns rhsBperp = Solve.solvePositive(nMatrix, rhsBperp); rhsBpar = Solve.solvePositive(nMatrix, rhsBpar); rhsTheta = Solve.solvePositive(nMatrix, rhsTheta); rhsThetaInc = Solve.solvePositive(nMatrix, rhsThetaInc); // Info on inversion, normalization is ok______ final DoubleMatrix yHatBperp = aMatrix.mmul(rhsBperp); final DoubleMatrix eHatBperp = bPerpMatrix.sub(yHatBperp); // DoubleMatrix Qe_hat = Qy - Qy_hat; // DoubleMatrix y_hatT = aMatrix * rhsTheta; // DoubleMatrix e_hatT = thetaMatrix - y_hatT; // Copy estimated coefficients to private fields bperpCoeffs = rhsBperp; bparCoeffs = rhsBpar; thetaCoeffs = rhsTheta; thetaIncCoeffs = rhsThetaInc; // Test inverse -- repair matrix!!! for (int i = 0; i < Qx_hat.rows; i++) { for (int j = 0; j < i; j++) { Qx_hat.put(j, i, Qx_hat.get(i, j)); } } final double maxDev = abs(nMatrix.mmul(Qx_hat).sub(DoubleMatrix.eye(Qx_hat.rows))).max(); logger.debug("BASELINE: max(abs(nMatrix*inv(nMatrix)-I)) = " + maxDev); if (maxDev > .01) { logger.warn( "BASELINE: max. deviation nMatrix*inv(nMatrix) from unity = " + maxDev + ". This is larger than .01: do not use this!"); } else if (maxDev > .001) { logger.warn( "BASELINE: max. deviation nMatrix*inv(nMatrix) from unity = " + maxDev + ". This is between 0.01 and 0.001 (maybe not use it)"); } // Output solution and give max error // --- B(l,p,h) = a000 + // a100*l + a010*p + a001*h + // a110*l*p + a101*l*h + a011*p*h + // a200*l^2 + a020*p^2 + a002*h^2 logger.debug("--------------------"); logger.debug("Result of modeling: Bperp(l,p) = a000 + a100*l + a010*p + a001*h + "); logger.debug(" a110*l*p + a101*l*h + a011*p*h + a200*l^2 + a020*p^2 + a002*h^2"); logger.debug("l,p,h in normalized coordinates [-2:2]."); logger.debug("Bperp_a000 = " + rhsBperp.get(0, 0)); logger.debug("Bperp_a100 = " + rhsBperp.get(1, 0)); logger.debug("Bperp_a010 = " + rhsBperp.get(2, 0)); logger.debug("Bperp_a001 = " + rhsBperp.get(3, 0)); logger.debug("Bperp_a110 = " + rhsBperp.get(4, 0)); logger.debug("Bperp_a101 = " + rhsBperp.get(5, 0)); logger.debug("Bperp_a011 = " + rhsBperp.get(6, 0)); logger.debug("Bperp_a200 = " + rhsBperp.get(7, 0)); logger.debug("Bperp_a020 = " + rhsBperp.get(8, 0)); logger.debug("Bperp_a002 = " + rhsBperp.get(9, 0)); double maxerr = (abs(eHatBperp)).max(); if (maxerr > 2.00) // { logger.warn("Max. error bperp modeling at 3D datapoints: " + maxerr + "m"); } else { logger.info("Max. error bperp modeling at 3D datapoints: " + maxerr + "m"); } logger.debug("--------------------"); logger.debug("Range: r(p) = r0 + dr*p"); logger.debug("l and p in un-normalized, absolute, coordinates (1:nMatrix)."); final double range1 = master.pix2range(1.0); final double range5000 = master.pix2range(5000.0); final double drange = (range5000 - range1) / 5000.0; logger.debug("range = " + (range1 - drange) + " + " + drange + "*p"); // orbit initialized isInitialized = true; }
// TODO: DOUBLECHECK EVERYTHING @Override public void map(Text key, jBLASArrayWritable input, GibbsSampling.Context context) throws IOException, InterruptedException { /* *******************************************************************/ /* initialize all memory we're going to use during the process */ long start_time = System.nanoTime(); ArrayList<DoubleMatrix> data = input.getData(); label = data.get(4); v_data = data.get(5); // check to see if we are in the first layer or there are layers beneath us we must sample // from if (data.size() > 6) { int prelayer = (data.size() - 6) / 3; DoubleMatrix[] preWeights = new DoubleMatrix[prelayer], preHbias = new DoubleMatrix[prelayer], preVbias = new DoubleMatrix[prelayer]; for (int i = 0; i < prelayer; i++) { preWeights[i] = data.get(6 + i * 3); preHbias[i] = data.get(7 + i * 3); preVbias[i] = data.get(8 + i * 3); } DoubleMatrix vnew = null; for (int i = 0; i < prelayer; i++) { weights = preWeights[i]; vbias = preVbias[i]; hbias = preHbias[i]; vnew = sample_h_from_v(i == 0 ? v_data : vnew); } v_data = vnew; } weights = data.get(0); hbias = data.get(1); hiddenChain = data.get(2); vbias = data.get(3); // check if we need to attach labels to the observed variables if (vbias.columns != v_data.columns) { DoubleMatrix labels = DoubleMatrix.zeros(1, classCount); int labelNum = (new Double(label.get(0))).intValue(); labels.put(labelNum, 1.0); v_data = DoubleMatrix.concatHorizontally(v_data, labels); } w1 = DoubleMatrix.zeros(weights.rows, weights.columns); hb1 = DoubleMatrix.zeros(hbias.rows, hbias.columns); vb1 = DoubleMatrix.zeros(vbias.rows, vbias.columns); /* ********************************************************************/ // sample hidden state to get positive phase // if empty, use it as the start of the chain // or use persistent hidden state from pCD DoubleMatrix phaseSample = sample_h_from_v(v_data); h1_data = new DoubleMatrix(); v1_data = new DoubleMatrix(); if (hiddenChain == null) { data.set(2, new DoubleMatrix(hbias.rows, hbias.columns)); hiddenChain = data.get(2); hiddenChain.copy(phaseSample); h1_data.copy(phaseSample); } else { h1_data.copy(hiddenChain); } // run Gibbs chain for k steps for (int j = 0; j < gibbsSteps; j++) { v1_data.copy(sample_v_from_h(h1_data)); h1_data.copy(sample_h_from_v(v1_data)); } DoubleMatrix hprob = propup(v1_data); weight_contribution(hiddenChain, v_data, hprob, v1_data); hiddenChain.copy(h1_data); data.get(0).copy(w1); data.get(1).copy(hb1); data.get(2).copy(hiddenChain); data.get(3).copy(vb1); jBLASArrayWritable outputmatrix = new jBLASArrayWritable(data); context.write(key, outputmatrix); log.info("Job completed in: " + (System.nanoTime() - start_time) / (1E6) + " ms"); }
public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int nn = n; DoubleMatrix d = DoubleMatrix.zeros(2 * n, 2 * n); DoubleMatrix d2 = DoubleMatrix.zeros(n, n); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { d.put(i, j, s.nextDouble()); d2.put(i, j, d.get(i, j)); } } // d2 = new DoubleMatrix(d.data); System.out.println(d); System.out.println(d); List<Integer> L = new ArrayList<Integer>(2 * n); List<Double> R = new ArrayList<Double>(2 * n); for (int i = 0; i < 2 * n; i++) { L.add(0); R.add(0.0); } // inicjalizacja lisci - jako etykiety kolejne liczby od 0 for (int i = 0; i < n; i++) { L.set(i, i); } // V - drzewo addytywne, które tworzymy ArrayList[] V = new ArrayList[2 * n]; for (int i = 0; i < V.length; i++) { V[i] = new ArrayList<Integer>(); } double suma, rmin, rr; int i, j, vertNum = n; while (n > 3) { // wyznaczanie r dla każdego liścia for (int a = 0; a < n; a++) { suma = 0; for (int b = 0; b < n; b++) { suma = suma + d.get(L.get(a), L.get(b)); } suma = suma / (n - 2); R.set(a, suma); } // wyznaczania sąsiadów na podstawie r i = 0; j = 1; rmin = d.get(L.get(0), L.get(1)) - (R.get(0) + R.get(1)); for (int a = 0; a < n - 1; a++) { for (int b = a + 1; b < n; b++) { rr = d.get(L.get(a), L.get(b)) - (R.get(a) + R.get(b)); if (rr < rmin) { rmin = rr; i = a; j = b; } } } // usuniecie ze zbioru lisci i,j oraz dodanie k L.set(n, vertNum); vertNum++; i = L.remove(i); j = L.remove(j - 1); n = n - 1; // uaktualnienie d dla każdego pozostałego liścia for (int l = 0; l < n - 1; l++) { double value = (d.get(i, L.get(l)) + d.get(j, L.get(l)) - d.get(i, j)) / 2; d.put(L.get(n - 1), L.get(l), value); d.put(L.get(l), L.get(n - 1), value); } // dodanie odpowiednich krawędzi do tworzonego drzewa V[i].add((vertNum - 1)); V[j].add((vertNum - 1)); V[vertNum - 1].add(i); V[vertNum - 1].add(j); // wyznaczenie odległości między nowym wierzchołkiem oraz i,j double value = (d.get(i, j) + d.get(i, L.get(0)) - d.get(j, L.get(0))) / 2; d.put(i, vertNum - 1, value); d.put(vertNum - 1, i, value); d.put(j, vertNum - 1, d.get(i, j) - d.get(i, vertNum - 1)); d.put(vertNum - 1, j, d.get(i, j) - d.get(i, vertNum - 1)); } // 3 elementowe drzewo double value; value = (d.get(L.get(0), L.get(1)) + d.get(L.get(0), L.get(2)) - d.get(L.get(1), L.get(2))) / 2; d.put(L.get(0), vertNum, value); d.put(vertNum, L.get(0), value); value = (d.get(L.get(0), L.get(1)) + d.get(L.get(1), L.get(2)) - d.get(L.get(0), L.get(2))) / 2; d.put(L.get(1), vertNum, value); d.put(vertNum, L.get(1), value); value = (d.get(L.get(0), L.get(2)) + d.get(L.get(1), L.get(2)) - d.get(L.get(0), L.get(1))) / 2; d.put(L.get(2), vertNum, value); d.put(vertNum, L.get(2), value); V[vertNum].add(L.get(0)); V[vertNum].add(L.get(1)); V[vertNum].add(L.get(2)); V[L.get(0)].add(vertNum); V[L.get(1)].add(vertNum); V[L.get(2)].add(vertNum); // wypisanie wyników System.out.println(d); // DoubleMatrix w2 = DoubleMatrix.zeros(2*n, 2*n); ArrayList w = new ArrayList<Integer>(); for (int a = 0; a <= vertNum; a++) { System.out.print(a); System.out.print(" : "); for (int b = 0; b < V[a].size(); b++) { System.out.print(V[a].get(b)); System.out.print(" "); // w2.put(a,b,Integer.parseInt(V[a].get(b).toString())); w.add(V[a].get(b)); } System.out.println(""); } DoubleMatrix A = DoubleMatrix.zeros((nn * (nn - 1)) / 2, vertNum); DoubleMatrix g = DoubleMatrix.zeros((nn * (nn - 1)) / 2, 1); double blad = nk(A, d2, g, V, vertNum); // wrzucam to do siebie - mkd System.out.println(A); DoubleMatrix p = (new DoubleMatrix(A.rows, A.columns, A.data)).transpose(); System.out.println(p.rows + " " + p.columns); DoubleMatrix p2 = (new DoubleMatrix(p.rows, p.columns, p.data)) .mmul((new DoubleMatrix(A.rows, A.columns, A.data))); System.out.println("p2: " + p2); DoubleMatrix p3 = MatrixFunctions.pow(p2, -1); System.out.println("p3: " + p3); DoubleMatrix p4 = p3.mmul(p); DoubleMatrix b = p4.mmul(g); // DoubleMatrix b = MatrixFunctions.pow(A.transpose().mmul(A), -1).mmul(A.transpose()).mmul(g); System.out.println(g); System.out.println(b); System.out.println("Kwadrat bledu wynosi " + blad); }
public static DoubleMatrix polyval( final DoubleMatrix x, final DoubleMatrix y, final DoubleMatrix coeff, int degree) { if (!x.isColumnVector()) { logger.warn("polyValGrid: require (x) standing data vectors!"); throw new IllegalArgumentException("polyval functions require (x) standing data vectors!"); } if (!y.isColumnVector()) { logger.warn("polyValGrid: require (y) standing data vectors!"); throw new IllegalArgumentException("polyval functions require (y) standing data vectors!"); } if (!coeff.isColumnVector()) { logger.warn("polyValGrid: require (coeff) standing data vectors!"); throw new IllegalArgumentException( "polyval functions require (coeff) standing data vectors!"); } if (degree < -1) { logger.warn("polyValGrid: degree < -1 ????"); } if (x.length > y.length) { logger.warn("polValGrid: x larger than y, while optimized for y larger x"); } if (degree == -1) { degree = degreeFromCoefficients(coeff.length); } // evaluate polynomial // DoubleMatrix result = new DoubleMatrix(x.length, y.length); int i; int j; double c00, c10, c01, c20, c11, c02, c30, c21, c12, c03, c40, c31, c22, c13, c04, c50, c41, c32, c23, c14, c05; switch (degree) { case 0: result.put(0, 0, coeff.get(0, 0)); break; case 1: c00 = coeff.get(0, 0); c10 = coeff.get(1, 0); c01 = coeff.get(2, 0); for (j = 0; j < result.columns; j++) { double c00pc01y1 = c00 + c01 * y.get(j, 0); for (i = 0; i < result.rows; i++) { result.put(i, j, c00pc01y1 + c10 * x.get(i, 0)); } } break; case 2: c00 = coeff.get(0, 0); c10 = coeff.get(1, 0); c01 = coeff.get(2, 0); c20 = coeff.get(3, 0); c11 = coeff.get(4, 0); c02 = coeff.get(5, 0); for (j = 0; j < result.columns; j++) { double y1 = y.get(j, 0); double c00pc01y1 = c00 + c01 * y1; double c02y2 = c02 * Math.pow(y1, 2); double c11y1 = c11 * y1; for (i = 0; i < result.rows; i++) { double x1 = x.get(i, 0); result.put(i, j, c00pc01y1 + c10 * x1 + c20 * Math.pow(x1, 2) + c11y1 * x1 + c02y2); } } break; case 3: c00 = coeff.get(0, 0); c10 = coeff.get(1, 0); c01 = coeff.get(2, 0); c20 = coeff.get(3, 0); c11 = coeff.get(4, 0); c02 = coeff.get(5, 0); c30 = coeff.get(6, 0); c21 = coeff.get(7, 0); c12 = coeff.get(8, 0); c03 = coeff.get(9, 0); for (j = 0; j < result.columns; j++) { double y1 = y.get(j, 0); double y2 = Math.pow(y1, 2); double c00pc01y1 = c00 + c01 * y1; double c02y2 = c02 * y2; double c11y1 = c11 * y1; double c21y1 = c21 * y1; double c12y2 = c12 * y2; double c03y3 = c03 * y1 * y2; for (i = 0; i < result.rows; i++) { double x1 = x.get(i, 0); double x2 = Math.pow(x1, 2); result.put( i, j, c00pc01y1 + c10 * x1 + c20 * x2 + c11y1 * x1 + c02y2 + c30 * x1 * x2 + c21y1 * x2 + c12y2 * x1 + c03y3); } } break; case 4: c00 = coeff.get(0, 0); c10 = coeff.get(1, 0); c01 = coeff.get(2, 0); c20 = coeff.get(3, 0); c11 = coeff.get(4, 0); c02 = coeff.get(5, 0); c30 = coeff.get(6, 0); c21 = coeff.get(7, 0); c12 = coeff.get(8, 0); c03 = coeff.get(9, 0); c40 = coeff.get(10, 0); c31 = coeff.get(11, 0); c22 = coeff.get(12, 0); c13 = coeff.get(13, 0); c04 = coeff.get(14, 0); for (j = 0; j < result.columns; j++) { double y1 = y.get(j, 0); double y2 = Math.pow(y1, 2); double c00pc01y1 = c00 + c01 * y1; double c02y2 = c02 * y2; double c11y1 = c11 * y1; double c21y1 = c21 * y1; double c12y2 = c12 * y2; double c03y3 = c03 * y1 * y2; double c31y1 = c31 * y1; double c22y2 = c22 * y2; double c13y3 = c13 * y2 * y1; double c04y4 = c04 * y2 * y2; for (i = 0; i < result.rows; i++) { double x1 = x.get(i, 0); double x2 = Math.pow(x1, 2); result.put( i, j, c00pc01y1 + c10 * x1 + c20 * x2 + c11y1 * x1 + c02y2 + c30 * x1 * x2 + c21y1 * x2 + c12y2 * x1 + c03y3 + c40 * x2 * x2 + c31y1 * x2 * x1 + c22y2 * x2 + c13y3 * x1 + c04y4); } } break; case 5: c00 = coeff.get(0, 0); c10 = coeff.get(1, 0); c01 = coeff.get(2, 0); c20 = coeff.get(3, 0); c11 = coeff.get(4, 0); c02 = coeff.get(5, 0); c30 = coeff.get(6, 0); c21 = coeff.get(7, 0); c12 = coeff.get(8, 0); c03 = coeff.get(9, 0); c40 = coeff.get(10, 0); c31 = coeff.get(11, 0); c22 = coeff.get(12, 0); c13 = coeff.get(13, 0); c04 = coeff.get(14, 0); c50 = coeff.get(15, 0); c41 = coeff.get(16, 0); c32 = coeff.get(17, 0); c23 = coeff.get(18, 0); c14 = coeff.get(19, 0); c05 = coeff.get(20, 0); for (j = 0; j < result.columns; j++) { double y1 = y.get(j, 0); double y2 = Math.pow(y1, 2); double y3 = y2 * y1; double c00pc01y1 = c00 + c01 * y1; double c02y2 = c02 * y2; double c11y1 = c11 * y1; double c21y1 = c21 * y1; double c12y2 = c12 * y2; double c03y3 = c03 * y3; double c31y1 = c31 * y1; double c22y2 = c22 * y2; double c13y3 = c13 * y3; double c04y4 = c04 * y2 * y2; double c41y1 = c41 * y1; double c32y2 = c32 * y2; double c23y3 = c23 * y3; double c14y4 = c14 * y2 * y2; double c05y5 = c05 * y3 * y2; for (i = 0; i < result.rows; i++) { double x1 = x.get(i, 0); double x2 = Math.pow(x1, 2); double x3 = x1 * x2; result.put( i, j, c00pc01y1 + c10 * x1 + c20 * x2 + c11y1 * x1 + c02y2 + c30 * x3 + c21y1 * x2 + c12y2 * x1 + c03y3 + c40 * x2 * x2 + c31y1 * x3 + c22y2 * x2 + c13y3 * x1 + c04y4 + c50 * x3 * x2 + c41y1 * x2 * x2 + c32y2 * x3 + c23y3 * x2 + c14y4 * x1 + c05y5); } } break; // TODO: solve up to 5 efficiently, do rest in loop default: for (j = 0; j < result.columns; j++) { double yy = y.get(j, 0); for (i = 0; i < result.rows; i++) { double xx = x.get(i, 0); result.put(i, j, polyval(xx, yy, coeff, degree)); } } } // switch degree return result; }
public static void exportResult( TrueSolutionCTM trueSolutionCTM, TrueSolution[] trueSolution, TrueSolution[] trueSolution1, TrueSolution[] trueSolution2, int limite, String folder) { try { int bdry = 1; // *set boundary type int numSections = trueSolution[0].numSections; int numSections1 = trueSolution1[0].numSections; int numSections2 = trueSolution2[0].numSections; BufferedWriter[] writerSection = new BufferedWriter[numSections]; BufferedWriter[] writerSection1 = new BufferedWriter[numSections1]; BufferedWriter[] writerSection2 = new BufferedWriter[numSections2]; BufferedWriter[] LyapSection = new BufferedWriter[numSections]; BufferedWriter writerTrue; BufferedWriter writerConsensusTerm; BufferedWriter writerAvr; BufferedWriter writerAvr1; BufferedWriter writerAvr2; BufferedWriter Error; BufferedWriter Error1; BufferedWriter Error2; BufferedWriter Lyap; BufferedWriter[] Mode = new BufferedWriter[numSections]; BufferedWriter[] Mode1 = new BufferedWriter[numSections1]; BufferedWriter[] Mode2 = new BufferedWriter[numSections2]; BufferedWriter[] GammaWrite = new BufferedWriter[numSections]; BufferedWriter writerDisagreement; BufferedWriter writerDisagreement1; BufferedWriter writerDisagreement2; System.out.print("Beginning of simulation "); new File("results/" + folder).mkdir(); RoadModel[] roadModels = new RoadModel[numSections]; RoadModel[] roadModels1 = new RoadModel[numSections1]; RoadModel[] roadModels2 = new RoadModel[numSections2]; for (int i = 0; i < numSections; i++) { trueSolution[i].section = trueSolution[i].setSections(); } for (int i = 0; i < numSections1; i++) { trueSolution1[i].section = trueSolution1[i].setSections(); } for (int i = 0; i < numSections2; i++) { trueSolution2[i].section = trueSolution2[i].setSections(); } for (int i = 0; i < numSections; i++) { roadModels[i] = trueSolution[i].setRoadModels(); } for (int i = 0; i < numSections1; i++) { roadModels1[i] = trueSolution1[i].setRoadModels(); } for (int i = 0; i < numSections2; i++) { roadModels2[i] = trueSolution2[i].setRoadModels(); } writerTrue = new BufferedWriter(new FileWriter(new File("results/" + folder + "/" + "trueState.csv"))); writerConsensusTerm = new BufferedWriter( new FileWriter(new File("results/" + folder + "/" + "consensusTerm.csv"))); writerAvr = new BufferedWriter(new FileWriter(new File("results/" + folder + "/" + "writerAvr.csv"))); writerAvr1 = new BufferedWriter( new FileWriter(new File("results/" + folder + "/" + "writerAvr1.csv"))); writerAvr2 = new BufferedWriter( new FileWriter(new File("results/" + folder + "/" + "writerAvr2.csv"))); Error = new BufferedWriter(new FileWriter(new File("results/" + folder + "/" + "Error.csv"))); Error1 = new BufferedWriter(new FileWriter(new File("results/" + folder + "/" + "Error1.csv"))); Error2 = new BufferedWriter(new FileWriter(new File("results/" + folder + "/" + "Error2.csv"))); Lyap = new BufferedWriter(new FileWriter(new File("results/" + folder + "/" + "Lyapunov.csv"))); writerDisagreement = new BufferedWriter( new FileWriter(new File("results/" + folder + "/" + "Disagreement.csv"))); writerDisagreement1 = new BufferedWriter( new FileWriter(new File("results/" + folder + "/" + "Disagreement1.csv"))); writerDisagreement2 = new BufferedWriter( new FileWriter(new File("results/" + folder + "/" + "Disagreement2.csv"))); Estimation[] estimations = new Estimation[numSections]; Estimation[] estimations1 = new Estimation[numSections1]; Estimation[] estimations2 = new Estimation[numSections2]; for (int i = 0; i < numSections; i++) { estimations[i] = new Estimation( roadModels[i], "KCF", true); // *set the last variable to indicate if consensus is needed String S = "results/" + folder + "/" + roadModels[i].nameModel; writerSection[i] = new BufferedWriter(new FileWriter(new File(S + ".csv"))); Mode[i] = new BufferedWriter(new FileWriter(new File(S + "Mode.csv"))); GammaWrite[i] = new BufferedWriter(new FileWriter(new File(S + "Gamma.csv"))); LyapSection[i] = new BufferedWriter(new FileWriter(new File(S + "LyapSection.csv"))); } for (int i = 0; i < numSections1; i++) { estimations1[i] = new Estimation( roadModels1[i], "KCF", false); // *set the last variable to indicate if consensus is needed String S = "results/" + folder + "/" + roadModels1[i].nameModel; writerSection1[i] = new BufferedWriter(new FileWriter(new File(S + "_1.csv"))); Mode1[i] = new BufferedWriter(new FileWriter(new File(S + "Mode1.csv"))); } for (int i = 0; i < numSections2; i++) { estimations2[i] = new Estimation( roadModels2[i], "KCF", false); // *set the last variable to indicate if consensus is needed String S = "results/" + folder + "/" + roadModels2[i].nameModel; writerSection2[i] = new BufferedWriter(new FileWriter(new File(S + "_2.csv"))); Mode2[i] = new BufferedWriter(new FileWriter(new File(S + "Mode2.csv"))); } int overlap = roadModels[0].trueSolution.overlapsec; int cellsec = roadModels[0].section.cellsec; int overlap1 = roadModels1[0].trueSolution.overlapsec; int cellsec1 = roadModels1[0].section.cellsec; int overlap2 = roadModels2[0].trueSolution.overlapsec; int cellsec2 = roadModels2[0].section.cellsec; DoubleMatrix I1 = DoubleMatrix.zeros(roadModels[0].section.cellsec, overlap); for (int i = 0; i < overlap; i++) { I1.put(i, i, 1); } DoubleMatrix I2 = DoubleMatrix.zeros(roadModels[0].section.cellsec, overlap); for (int i = roadModels[0].section.cellsec - overlap; i < roadModels[0].section.cellsec; i++) { I2.put(i, i - (roadModels[0].section.cellsec - overlap), 1); } DoubleMatrix I123 = DoubleMatrix.concatVertically(I1.transpose(), I2.transpose()); DoubleMatrix H_hat = I2.transpose(); for (int i = 0; i < numSections - 2; i++) { H_hat = Concat.Diagonal(H_hat, I123); } H_hat = Concat.Diagonal(H_hat, I1.transpose()); DoubleMatrix L_tilde = DoubleMatrix.zeros((numSections - 1) * 2 * overlap, numSections * cellsec); for (int i = 0; i < numSections - 1; i++) { for (int j = 0; j < overlap; j++) { L_tilde.put(i * (2 * overlap) + j, (i + 1) * (cellsec) + j, 1); } for (int j = 0; j < overlap; j++) { L_tilde.put(i * (2 * overlap) + overlap + j, (i + 1) * (cellsec) - overlap + j, 1); } for (int j = 0; j < overlap; j++) { L_tilde.put(i * (2 * overlap) + j, (i + 1) * (cellsec) - overlap + j, -1); } for (int j = 0; j < overlap; j++) { L_tilde.put(i * (2 * overlap) + overlap + j, (i + 1) * (cellsec) + j, -1); } } DoubleMatrix[] S = new DoubleMatrix[numSections]; trueSolutionCTM.getMeasurement(); for (int i = 0; i < numSections; i++) { if (i == 0) { estimations[i].filter.Ltilde = L_tilde.getRange(i, i + overlap, i, i + 2 * cellsec); } else if (i == numSections - 1) { estimations[i].filter.Ltilde = L_tilde.getRange( (2 * (numSections - 1) - 1) * overlap, (2 * (numSections - 1) - 1) * overlap + overlap, (i - 1) * cellsec, (i + 1) * cellsec); } else { estimations[i].filter.Ltilde = L_tilde.getRange( (2 * i - 1) * overlap, (2 * i + 1) * overlap, (i - 1) * cellsec, (i + 2) * cellsec); } estimations[i].filter.I1 = I1; estimations[i].filter.I2 = I2; } double[] disagAvg = new double[3]; double[] errorAvg = new double[3]; double[] errAvgEntire = new double[3]; for (int k = 0; k < limite; k++) { System.out.println("time step=" + k); for (int i = 0; i < trueSolutionCTM.trueStatesCTM.getRows(); i++) { writerTrue.write(trueSolutionCTM.trueStatesCTM.get(i, 0) + ","); } writerTrue.write("\n"); DoubleMatrix[] mean = new DoubleMatrix[numSections]; DoubleMatrix[] mean_1 = new DoubleMatrix[numSections1]; DoubleMatrix[] mean_2 = new DoubleMatrix[numSections2]; double ErrorAvg = 0; double ErrorEntire = 0; double ErrorAvg1 = 0; double ErrorAvg2 = 0; double LyapAvg = 0; double[] errorAvgk = new double[3]; for (int i = 0; i < numSections; i++) { mean[i] = estimations[i].getDensityMean(); if (numSections == 1) { for (int j = 0; j < mean[i].length; j++) { writerAvr.write(mean[i].get(j) + ","); errorAvgk[0] = (mean[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) * (mean[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) + errorAvgk[0]; } } else { if (i == 0) { for (int j = 0; j < mean[i].length - overlap; j++) { writerAvr.write(mean[i].get(j) + ","); errorAvgk[0] = (mean[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) * (mean[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) + errorAvgk[0]; } } else if (i > 0 && i < numSections - 1) { for (int j = 0; j < overlap; j++) { writerAvr.write( (mean[i].get(j) + mean[i - 1].get(cellsec - overlap + j)) / 2 + ","); errorAvgk[0] = ((mean[i].get(j) + mean[i - 1].get(cellsec - overlap + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean[i].length - overlap) + j, 0)) * ((mean[i].get(j) + mean[i - 1].get(cellsec - overlap + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean[i].length - overlap) + j, 0)) + errorAvgk[0]; } for (int j = 0; j < mean[i].length - 2 * overlap; j++) { writerAvr.write(mean[i].get(overlap + j) + ","); errorAvgk[0] = (mean[i].get(overlap + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean[i].length - overlap) + overlap + j, 0)) * (mean[i].get(overlap + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean[i].length - overlap) + overlap + j, 0)) + errorAvgk[0]; } } else if (i == numSections - 1) { for (int j = 0; j < overlap; j++) { writerAvr.write( (mean[i].get(j) + mean[i - 1].get(cellsec - overlap + j)) / 2 + ","); errorAvgk[0] = ((mean[i].get(j) + mean[i - 1].get(cellsec - overlap + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean[i].length - overlap) + j, 0)) * ((mean[i].get(j) + mean[i - 1].get(cellsec - overlap + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean[i].length - overlap) + j, 0)) + errorAvgk[0]; } for (int j = 0; j < mean[i].length - overlap; j++) { writerAvr.write(mean[i].get(overlap + j) + ","); errorAvgk[0] = (mean[i].get(overlap + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean[i].length - overlap) + overlap + j, 0)) * (mean[i].get(overlap + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean[i].length - overlap) + overlap + j, 0)) + errorAvgk[0]; } } } for (int j = 0; j < mean[i].length; j++) { writerSection[i].write(mean[i].get(j) + ","); } double errorSection = (((mean[i].sub(trueSolution[i].trueStates)) .transpose() .mmul((mean[i].sub(trueSolution[i].trueStates)))) .get(0, 0)) / ((double) cellsec); Error.write(errorSection + ","); ErrorAvg = ErrorAvg + errorSection / ((double) numSections); writerSection[i].write("\n"); double lyapunovSection = ((mean[i].sub(trueSolution[i].trueStates)).transpose()) .mmul(InverseMatrix.invPoSym(estimations[i].filter.var)) .mmul(mean[i].sub(trueSolution[i].trueStates)) .get(0, 0); double tracevar = 0; for (int c = 0; c < mean[i].getRows(); c++) { tracevar = tracevar + estimations[i].filter.var.get(c, c); } LyapSection[i].write(lyapunovSection + ","); LyapSection[i].write(tracevar + "\n"); if (i != 0) { LyapAvg = LyapAvg + lyapunovSection / ((double) (numSections - 1)); } } errAvgEntire[0] = errorAvgk[0] / ((double) (limite * trueSolutionCTM.cells)) + errAvgEntire[0]; Error.write(ErrorAvg + ","); errorAvg[0] = errorAvg[0] + ErrorAvg / ((double) (limite)); Lyap.write(LyapAvg + "\n"); for (int i = 0; i < numSections1; i++) { mean_1[i] = estimations1[i].getDensityMean(); if (numSections1 == 1) { for (int j = 0; j < mean_1[i].length; j++) { writerAvr1.write(mean_1[i].get(j) + ","); errorAvgk[1] = (mean_1[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) * (mean_1[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) + errorAvgk[1]; } } else { if (i == 0) { for (int j = 0; j < mean_1[i].length - overlap1; j++) { writerAvr1.write(mean_1[i].get(j) + ","); errorAvgk[1] = (mean_1[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) * (mean_1[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) + errorAvgk[1]; } } else if (i > 0 && i < numSections1 - 1) { for (int j = 0; j < overlap1; j++) { writerAvr1.write( (mean_1[i].get(j) + mean_1[i - 1].get(cellsec1 - overlap1 + j)) / 2 + ","); errorAvgk[1] = ((mean_1[i].get(j) + mean_1[i - 1].get(cellsec1 - overlap1 + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean_1[i].length - overlap1) + j, 0)) * ((mean_1[i].get(j) + mean_1[i - 1].get(cellsec1 - overlap1 + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean_1[i].length - overlap1) + j, 0)) + errorAvgk[1]; } for (int j = 0; j < mean_1[i].length - 2 * overlap1; j++) { writerAvr1.write(mean_1[i].get(overlap1 + j) + ","); errorAvgk[1] = (mean_1[i].get(overlap1 + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean_1[i].length - overlap1) + overlap1 + j, 0)) * (mean_1[i].get(overlap1 + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean_1[i].length - overlap1) + overlap1 + j, 0)) + errorAvgk[1]; } } else if (i == numSections1 - 1) { for (int j = 0; j < overlap1; j++) { writerAvr1.write( (mean_1[i].get(j) + mean_1[i - 1].get(cellsec1 - overlap1 + j)) / 2 + ","); errorAvgk[1] = ((mean_1[i].get(j) + mean_1[i - 1].get(cellsec1 - overlap1 + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean_1[i].length - overlap1) + j, 0)) * ((mean_1[i].get(j) + mean_1[i - 1].get(cellsec1 - overlap1 + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean_1[i].length - overlap1) + j, 0)) + errorAvgk[1]; } for (int j = 0; j < mean_1[i].length - overlap1; j++) { writerAvr1.write(mean_1[i].get(overlap1 + j) + ","); errorAvgk[1] = (mean_1[i].get(overlap1 + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean_1[i].length - overlap1) + overlap1 + j, 0)) * (mean_1[i].get(overlap1 + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean_1[i].length - overlap1) + overlap1 + j, 0)) + errorAvgk[1]; } } } for (int j = 0; j < mean_1[i].length; j++) { writerSection1[i].write(mean_1[i].get(j) + ","); } double errorSection1 = (((mean_1[i].sub(trueSolution1[i].trueStates).transpose()) .mmul((mean_1[i].sub(trueSolution1[i].trueStates)))) .get(0, 0)) / ((double) cellsec1); Error1.write(errorSection1 + ","); ErrorAvg1 = ErrorAvg1 + errorSection1 / ((double) numSections1); writerSection1[i].write("\n"); } Error1.write(ErrorAvg1 + ","); errorAvg[1] = errorAvg[1] + ErrorAvg1 / ((double) (limite)); errAvgEntire[1] = errorAvgk[1] / ((double) (limite * trueSolutionCTM.cells)) + errAvgEntire[1]; for (int i = 0; i < numSections2; i++) { mean_2[i] = estimations2[i].getDensityMean(); if (numSections2 == 1) { for (int j = 0; j < mean_2[i].length; j++) { writerAvr2.write(mean_2[i].get(j) + ","); errorAvgk[2] = (mean_2[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) * (mean_2[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) + errorAvgk[2]; } } else { if (i == 0) { for (int j = 0; j < mean_2[i].length - overlap2; j++) { writerAvr2.write(mean_2[i].get(j) + ","); errorAvgk[2] = (mean_2[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) * (mean_2[i].get(j) - trueSolutionCTM.trueStatesCTM.get(j, 0)) + errorAvgk[2]; } } else if (i > 0 && i < numSections2 - 1) { for (int j = 0; j < overlap2; j++) { writerAvr2.write( (mean_2[i].get(j) + mean_2[i - 1].get(cellsec2 - overlap2 + j)) / 2 + ","); errorAvgk[2] = ((mean_2[i].get(j) + mean_2[i - 1].get(cellsec2 - overlap2 + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean_2[i].length - overlap2) + j, 0)) * ((mean_2[i].get(j) + mean_2[i - 1].get(cellsec2 - overlap2 + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean_2[i].length - overlap2) + j, 0)) + errorAvgk[2]; } for (int j = 0; j < mean_2[i].length - 2 * overlap2; j++) { writerAvr2.write(mean_2[i].get(overlap2 + j) + ","); errorAvgk[2] = (mean_2[i].get(overlap2 + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean_2[i].length - overlap2) + overlap2 + j, 0)) * (mean_2[i].get(overlap2 + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean_2[i].length - overlap2) + overlap2 + j, 0)) + errorAvgk[2]; } } else if (i == numSections2 - 1) { for (int j = 0; j < overlap2; j++) { writerAvr2.write( (mean_2[i].get(j) + mean_2[i - 1].get(cellsec2 - overlap2 + j)) / 2 + ","); errorAvgk[2] = ((mean_2[i].get(j) + mean_2[i - 1].get(cellsec2 - overlap2 + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean_2[i].length - overlap2) + j, 0)) * ((mean_2[i].get(j) + mean_2[i - 1].get(cellsec2 - overlap2 + j)) / 2 - trueSolutionCTM.trueStatesCTM.get( i * (mean_2[i].length - overlap2) + j, 0)) + errorAvgk[2]; } for (int j = 0; j < mean_2[i].length - overlap2; j++) { writerAvr2.write(mean_2[i].get(overlap2 + j) + ","); errorAvgk[2] = (mean_2[i].get(overlap2 + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean_2[i].length - overlap2) + overlap2 + j, 0)) * (mean_2[i].get(overlap2 + j) - trueSolutionCTM.trueStatesCTM.get( i * (mean_2[i].length - overlap2) + overlap2 + j, 0)) + errorAvgk[2]; } } } for (int j = 0; j < mean_2[i].length; j++) { writerSection2[i].write(mean_2[i].get(j) + ","); } double errorSection2 = (((mean_2[i].sub(trueSolution2[i].trueStates)) .transpose() .mmul((mean_2[i].sub(trueSolution2[i].trueStates)))) .get(0, 0)) / ((double) (cellsec2)); Error2.write(errorSection2 + ","); ErrorAvg2 = ErrorAvg2 + errorSection2 / ((double) numSections2); writerSection2[i].write("\n"); } Error2.write(ErrorAvg2 + ","); errorAvg[2] = errorAvg[2] + ErrorAvg2 / ((double) (limite)); errAvgEntire[2] = errorAvgk[2] / ((double) (limite * trueSolutionCTM.cells)) + errAvgEntire[2]; writerAvr.write("\n"); writerAvr1.write("\n"); writerAvr2.write("\n"); Error.write("\n"); Error1.write("\n"); Error2.write("\n"); Section[] secs = new Section[numSections]; Section[] secs1 = new Section[numSections1]; Section[] secs2 = new Section[numSections2]; for (int i = 0; i < numSections; i++) { secs[i] = trueSolution[i].setSections(); // every step, update mode } for (int i = 0; i < numSections1; i++) { secs1[i] = trueSolution1[i].setSections(); } for (int i = 0; i < numSections2; i++) { secs2[i] = trueSolution2[i].setSections(); } for (int i = 0; i < numSections; i++) { secs[i].Estimates = mean[i]; } for (int i = 0; i < numSections1; i++) { secs1[i].Estimates = mean_1[i]; } for (int i = 0; i < numSections2; i++) { secs2[i].Estimates = mean_2[i]; } for (int i = 0; i < numSections; i++) { if (secs[i].getClass().getSimpleName().equals("FC")) { secs[i].getwavefrontfromEstimation(); if (secs[i].wavefront < 0) { secs[i].wavefront = 0; } if (secs[i].wavefront <= cellsec - 2) { if (trueSolution[i].flux(secs[i].Estimates.get(secs[i].wavefront, 0)) - trueSolution[i].flux(secs[i].Estimates.get(secs[i].wavefront + 1, 0)) > 0) { secs[i].wavedirection = 0; } else { secs[i].wavedirection = 1; } } else if (secs[i].wavefront == cellsec - 1) { if (secs[i].index != numSections - 1) { if (trueSolution[i].flux(secs[i].Estimates.get(secs[i].wavefront, 0)) - trueSolution[i + 1].flux(secs[i].Estimates.get(overlap, 0)) > 0) { secs[i].wavedirection = 0; } else { secs[i].wavedirection = 1; } } else { secs[i].wavedirection = 0; } } secs[i].getModelA(); secs[i].getModelB1(); secs[i].getModelB2(); } else if (secs[i].getClass().getSimpleName().equals("CF")) { secs[i].getwavefrontfromEstimation(); secs[i].getModelA(); secs[i].getModelB1(); secs[i].getModelB2(); } } for (int i = 0; i < numSections1; i++) { if (secs1[i].getClass().getSimpleName().equals("FC")) { secs1[i].getwavefrontfromEstimation(); if (secs1[i].wavefront < 0) { secs1[i].wavefront = 0; } if (secs1[i].wavefront <= cellsec1 - 2) { if (trueSolution1[i].flux(secs1[i].Estimates.get(secs1[i].wavefront, 0)) - trueSolution1[i].flux(secs1[i].Estimates.get(secs1[i].wavefront + 1, 0)) > 0) { secs1[i].wavedirection = 0; } else { secs1[i].wavedirection = 1; } } else if (secs1[i].wavefront == cellsec1 - 1) { if (secs1[i].index != numSections1 - 1) { if (trueSolution1[i].flux(secs1[i].Estimates.get(secs1[i].wavefront, 0)) - trueSolution1[i + 1].flux(secs1[i].Estimates.get(overlap1, 0)) > 0) { secs1[i].wavedirection = 0; } else { secs1[i].wavedirection = 1; } } else { secs1[i].wavedirection = 0; } } secs1[i].getModelA(); secs1[i].getModelB1(); secs1[i].getModelB2(); } else if (secs1[i].getClass().getSimpleName().equals("CF")) { secs1[i].getwavefrontfromEstimation(); secs1[i].getModelA(); secs1[i].getModelB1(); secs1[i].getModelB2(); } } for (int i = 0; i < numSections2; i++) { if (secs2[i].getClass().getSimpleName().equals("FC")) { secs2[i].getwavefrontfromEstimation(); if (secs2[i].wavefront < 0) { secs2[i].wavefront = 0; } if (secs2[i].wavefront <= cellsec2 - 2) { if (trueSolution2[i].flux(secs2[i].Estimates.get(secs2[i].wavefront, 0)) - trueSolution2[i].flux(secs2[i].Estimates.get(secs2[i].wavefront + 1, 0)) > 0) { secs2[i].wavedirection = 0; } else { secs2[i].wavedirection = 1; } } else if (secs2[i].wavefront == cellsec2 - 1) { if (secs2[i].index != numSections2 - 1) { if (trueSolution2[i].flux(secs2[i].Estimates.get(secs2[i].wavefront, 0)) - trueSolution2[i + 1].flux(secs2[i].Estimates.get(overlap2, 0)) > 0) { secs2[i].wavedirection = 0; } else { secs2[i].wavedirection = 1; } } else { secs2[i].wavedirection = 0; } } secs2[i].getModelA(); secs2[i].getModelB1(); secs2[i].getModelB2(); } else if (secs2[i].getClass().getSimpleName().equals("CF")) { secs2[i].getwavefrontfromEstimation(); secs2[i].getModelA(); secs2[i].getModelB1(); secs2[i].getModelB2(); } } for (int i = 0; i < numSections; i++) { estimations[i].setSection(secs[i]); } for (int i = 0; i < numSections1; i++) { estimations1[i].setSection(secs1[i]); } for (int i = 0; i < numSections2; i++) { estimations2[i].setSection(secs2[i]); } for (int i = 0; i < numSections; i++) { trueSolution[i].section = secs[i]; } for (int i = 0; i < numSections1; i++) { trueSolution1[i].section = secs1[i]; } for (int i = 0; i < numSections2; i++) { trueSolution2[i].section = secs2[i]; } for (int i = 0; i < numSections; i++) { if (i == 0) { GammaWrite[i].write(estimations[i].filter.gammaStar + ","); } else if (i == numSections - 1) { GammaWrite[i].write(estimations[i].filter.gammaStar + ","); } else { GammaWrite[i].write(estimations[i].filter.gammaStar + ","); } GammaWrite[i].write("\n"); } for (int i = 0; i < numSections; i++) { Mode[i].write(estimations[i].roadModel.section.getClass().getSimpleName() + ","); Mode[i].write( estimations[i].roadModel.section.wavefront + ","); // estimated location of shock Mode[i].write( estimations[i].roadModel.section._wavefront + ","); // true location of shock Mode[i].write(estimations[i].roadModel.section.wavedirection + ","); Mode[i].write(estimations[i].roadModel.section._wavedirection + ","); Mode[i].write("\n"); } for (int i = 0; i < numSections1; i++) { Mode1[i].write(estimations1[i].roadModel.section.getClass().getSimpleName() + ","); Mode1[i].write(estimations1[i].roadModel.section.wavefront + ","); Mode1[i].write(estimations1[i].roadModel.section._wavefront + ","); Mode1[i].write(estimations1[i].roadModel.section.wavedirection + ","); Mode1[i].write(estimations1[i].roadModel.section._wavedirection + ","); Mode1[i].write("\n"); } for (int i = 0; i < numSections2; i++) { Mode2[i].write(estimations2[i].roadModel.section.getClass().getSimpleName() + ","); Mode2[i].write(estimations2[i].roadModel.section.wavefront + ","); Mode2[i].write(estimations2[i].roadModel.section._wavefront + ","); Mode2[i].write(estimations2[i].roadModel.section.wavedirection + ","); Mode2[i].write(estimations2[i].roadModel.section._wavedirection + ","); Mode2[i].write("\n"); } for (int i = 0; i < numSections; i++) { // trueSolution[i].updateMeasurement(); // roadModels[i].updateMeasurement(); estimations[i].filter.getNewParametersFromModel(); } for (int i = 0; i < numSections1; i++) { // trueSolution[i].updateMeasurement(); // roadModels[i].updateMeasurement(); estimations1[i].filter.getNewParametersFromModel(); } for (int i = 0; i < numSections2; i++) { // trueSolution[i].updateMeasurement(); // roadModels[i].updateMeasurement(); estimations2[i].filter.getNewParametersFromModel(); } for (int i = 0; i < numSections; i++) { S[i] = (estimations[i].filter.measure.transpose()) .mmul(InverseMatrix.invPoSym(estimations[i].filter.measureVar)) .mmul(estimations[i].filter.measure); } double disag = 0; for (int i = 0; i < numSections - 1; i++) { disag = disag + (((mean[i] .getRange(cellsec - overlap, cellsec, 0, 1) .sub(mean[i + 1].getRange(0, overlap, 0, 1))) .transpose() .mmul( mean[i] .getRange(cellsec - overlap, cellsec, 0, 1) .sub(mean[i + 1].getRange(0, overlap, 0, 1)))) .get(0, 0)) / ((double) overlap); } disag = disag / ((double) (numSections - 1)); writerDisagreement.write(disag + ","); disagAvg[0] = disagAvg[0] + disag / ((double) limite); for (int i = 0; i < numSections - 1; i++) { writerDisagreement.write( ((mean[i] .getRange(cellsec - overlap, cellsec, 0, 1) .sub(mean[i + 1].getRange(0, overlap, 0, 1))) .transpose() .mmul( mean[i] .getRange(cellsec - overlap, cellsec, 0, 1) .sub(mean[i + 1].getRange(0, overlap, 0, 1)))) .get(0, 0) + ","); } writerDisagreement.write("\n"); double disag1 = 0; for (int i = 0; i < numSections1 - 1; i++) { disag1 = disag1 + (((mean_1[i] .getRange(cellsec1 - overlap1, cellsec1, 0, 1) .sub(mean_1[i + 1].getRange(0, overlap1, 0, 1))) .transpose() .mmul( mean_1[i] .getRange(cellsec1 - overlap1, cellsec1, 0, 1) .sub(mean_1[i + 1].getRange(0, overlap1, 0, 1)))) .get(0, 0)) / ((double) overlap1); } disag1 = disag1 / ((double) (numSections1 - 1)); writerDisagreement1.write(disag1 + ","); disagAvg[1] = disagAvg[1] + disag1 / ((double) limite); for (int i = 0; i < numSections1 - 1; i++) { writerDisagreement1.write( ((mean_1[i] .getRange(cellsec1 - overlap1, cellsec1, 0, 1) .sub(mean_1[i + 1].getRange(0, overlap1, 0, 1))) .transpose() .mmul( mean_1[i] .getRange(cellsec1 - overlap1, cellsec1, 0, 1) .sub(mean_1[i + 1].getRange(0, overlap1, 0, 1)))) .get(0, 0) + ","); } writerDisagreement1.write("\n"); double disag2 = 0; for (int i = 0; i < numSections2 - 1; i++) { disag2 = disag2 + (((mean_2[i] .getRange(cellsec2 - overlap2, cellsec2, 0, 1) .sub(mean_2[i + 1].getRange(0, overlap2, 0, 1))) .transpose() .mmul( mean_2[i] .getRange(cellsec2 - overlap2, cellsec2, 0, 1) .sub(mean_2[i + 1].getRange(0, overlap2, 0, 1)))) .get(0, 0)) / ((double) overlap2); } disag2 = disag2 / ((double) (numSections2 - 1)); writerDisagreement2.write(disag2 + ","); disagAvg[2] = disagAvg[2] + disag2 / ((double) limite); for (int i = 0; i < numSections2 - 1; i++) { writerDisagreement2.write( ((mean_2[i] .getRange(cellsec2 - overlap2, cellsec2, 0, 1) .sub(mean_2[i + 1].getRange(0, overlap2, 0, 1))) .transpose() .mmul( mean_2[i] .getRange(cellsec2 - overlap2, cellsec2, 0, 1) .sub(mean_2[i + 1].getRange(0, overlap2, 0, 1)))) .get(0, 0) + ","); } writerDisagreement2.write("\n"); trueSolutionCTM.update(); // **start defining boundary condition int cells = trueSolutionCTM.trueStatesCTMPrior.getRows(); if (bdry == 0) { double inflow = trueSolutionCTM.receiving(trueSolutionCTM.trueStatesCTMPrior.get(0, 0)); double outflow = trueSolutionCTM.sending(trueSolutionCTM.trueStatesCTMPrior.get(cells - 1, 0)); double upOut = trueSolutionCTM.computeFlux( trueSolutionCTM.trueStatesCTMPrior.get(0, 0), trueSolutionCTM.trueStatesCTMPrior.get(1, 0)); trueSolutionCTM.trueStatesCTM.put( 0, 0, trueSolutionCTM.trueStatesCTMPrior.get(0, 0) + (trueSolutionCTM.dt / trueSolutionCTM.dx) * (inflow - upOut)); double downIn = trueSolutionCTM.computeFlux( trueSolutionCTM.trueStatesCTMPrior.get(cells - 2, 0), trueSolutionCTM.trueStatesCTMPrior.get(cells - 1, 0)); trueSolutionCTM.trueStatesCTM.put( cells - 1, 0, trueSolutionCTM.trueStatesCTMPrior.get(cells - 1, 0) + (trueSolutionCTM.dt / trueSolutionCTM.dx) * (downIn - outflow)); } else if (bdry == 1) { double inflow = 0.1125 + 0.1125 * Math.sin(k * (Math.PI / 4000) + (Math.PI)); if (inflow > trueSolutionCTM.receiving(trueSolutionCTM.trueStatesCTMPrior.get(0, 0))) { inflow = trueSolutionCTM.receiving(trueSolutionCTM.trueStatesCTMPrior.get(0, 0)); } double outflow = trueSolutionCTM.receiving(trueSolutionCTM.trueStatesCTMPrior.get(cells - 1, 0)); // double outflow=0.1125+0.1125*Math.sin(k*(Math.PI/1000)); // if // (outflow>trueSolution[numSections-1].sending(trueSolution[numSections-1].trueStatesPrior.get(cellsec-1,0))){ // // outflow=trueSolution[numSections-1].sending(trueSolution[numSections-1].trueStatesPrior.get(cellsec-1,0)); // } double upOut = trueSolutionCTM.computeFlux( trueSolutionCTM.trueStatesCTMPrior.get(0, 0), trueSolutionCTM.trueStatesCTMPrior.get(1, 0)); trueSolutionCTM.trueStatesCTM.put( 0, 0, trueSolutionCTM.trueStatesCTMPrior.get(0, 0) + (trueSolutionCTM.dt / trueSolutionCTM.dx) * (inflow - upOut)); double downIn = trueSolutionCTM.computeFlux( trueSolutionCTM.trueStatesCTMPrior.get(cells - 2, 0), trueSolutionCTM.trueStatesCTMPrior.get(cells - 1, 0)); trueSolutionCTM.trueStatesCTM.put( cells - 1, 0, trueSolutionCTM.trueStatesCTMPrior.get(cells - 1, 0) + (trueSolutionCTM.dt / trueSolutionCTM.dx) * (downIn - outflow)); } else { double inflow = 0.1125 + 0.1125 * Math.sin(k * (Math.PI / 8000) + (Math.PI)); if (inflow > trueSolutionCTM.receiving(trueSolutionCTM.trueStatesCTMPrior.get(0, 0))) { inflow = trueSolutionCTM.receiving(trueSolutionCTM.trueStatesCTMPrior.get(0, 0)); } double outflow = trueSolutionCTM.receiving(trueSolutionCTM.trueStatesCTMPrior.get(cells - 1, 0)); // double outflow=0.1125+0.1125*Math.sin(k*(Math.PI/1000)); // if // (outflow>trueSolution[numSections-1].sending(trueSolution[numSections-1].trueStatesPrior.get(cellsec-1,0))){ // // outflow=trueSolution[numSections-1].sending(trueSolution[numSections-1].trueStatesPrior.get(cellsec-1,0)); // } double upOut = trueSolutionCTM.computeFlux( trueSolutionCTM.trueStatesCTMPrior.get(0, 0), trueSolutionCTM.trueStatesCTMPrior.get(1, 0)); trueSolutionCTM.trueStatesCTM.put( 0, 0, trueSolutionCTM.trueStatesCTMPrior.get(0, 0) + (trueSolutionCTM.dt / trueSolutionCTM.dx) * (inflow - upOut)); double downIn = trueSolutionCTM.computeFlux( trueSolutionCTM.trueStatesCTMPrior.get(cells - 2, 0), trueSolutionCTM.trueStatesCTMPrior.get(cells - 1, 0)); trueSolutionCTM.trueStatesCTM.put( cells - 1, 0, trueSolutionCTM.trueStatesCTMPrior.get(cells - 1, 0) + (trueSolutionCTM.dt / trueSolutionCTM.dx) * (downIn - outflow)); // *define boundary conditions here } // **end defining boundary condition trueSolutionCTM.getMeasurement(); for (int i = 0; i < numSections; i++) { trueSolution[i].update(); } for (int i = 0; i < numSections; i++) { trueSolution[i].updatemeasurement(); } for (int i = 0; i < numSections1; i++) { trueSolution1[i].update(); } for (int i = 0; i < numSections1; i++) { trueSolution1[i].updatemeasurement(); } for (int i = 0; i < numSections2; i++) { trueSolution2[i].update(); } for (int i = 0; i < numSections2; i++) { trueSolution2[i].updatemeasurement(); } for (int i = 0; i < numSections; i++) { estimations[i].nextStepWithoutUpdateTrue(); } for (int i = 0; i < numSections1; i++) { estimations1[i].nextStepWithoutUpdateTrue(); } for (int i = 0; i < numSections2; i++) { estimations2[i].nextStepWithoutUpdateTrue(); } if (estimations[0].consensus) { for (int i = 0; i < numSections; i++) { estimations[i].filter.ComputeEig(); } for (int i = 0; i < numSections; i++) { if (i == 0) { estimations[i].filter.ComputeGammaStar2(estimations[1].filter); } else if (i == numSections - 1) { estimations[i].filter.ComputeGammaStar1(estimations[numSections - 2].filter); } else { estimations[i].filter.ComputeGammaStar( estimations[i - 1].filter, estimations[i + 1].filter); } } DoubleMatrix[] mean1 = new DoubleMatrix[numSections]; mean1[0] = estimations[0].filter.Consensus2(estimations[1].filter); writerConsensusTerm.write(estimations[0].filter.scaling.get(0) + ","); writerConsensusTerm.write(estimations[0].filter.scaling.get(1) + ","); for (int i = 1; i < numSections - 1; i++) { mean1[i] = estimations[i].filter.Consensus( estimations[i - 1].filter, estimations[i + 1].filter); writerConsensusTerm.write(estimations[i].filter.scaling.get(0) + ","); writerConsensusTerm.write(estimations[i].filter.scaling.get(1) + ","); } mean1[numSections - 1] = estimations[numSections - 1].filter.Consensus1(estimations[numSections - 2].filter); writerConsensusTerm.write(estimations[numSections - 1].filter.scaling.get(0) + ","); writerConsensusTerm.write(estimations[numSections - 1].filter.scaling.get(1) + ","); writerConsensusTerm.write("\n"); for (int i = 0; i < numSections; i++) { estimations[i].filter.mean = mean1[i]; } } } for (int i = 0; i < numSections; i++) { writerSection[i].flush(); writerSection[i].close(); Mode[i].flush(); Mode[i].close(); LyapSection[i].flush(); LyapSection[i].close(); GammaWrite[i].flush(); GammaWrite[i].close(); } for (int i = 0; i < numSections1; i++) { writerSection1[i].flush(); writerSection1[i].close(); Mode1[i].flush(); Mode1[i].close(); } for (int i = 0; i < numSections2; i++) { writerSection2[i].flush(); writerSection2[i].close(); Mode2[i].flush(); Mode2[i].close(); } writerAvr.flush(); writerAvr.close(); writerConsensusTerm.flush(); writerConsensusTerm.close(); writerAvr1.flush(); writerAvr1.close(); writerAvr2.flush(); writerAvr2.close(); Error.flush(); Error.close(); Error1.flush(); Error1.close(); Error2.flush(); Error2.close(); Lyap.flush(); Lyap.close(); writerTrue.flush(); writerTrue.close(); writerDisagreement.flush(); writerDisagreement.close(); writerDisagreement1.flush(); writerDisagreement1.close(); writerDisagreement2.flush(); writerDisagreement2.close(); System.out.print("Disag_avg_DLKCF=" + disagAvg[0] + "\n"); System.out.print("Disag_avg_DLKF=" + disagAvg[1] + "\n"); System.out.print("Disag_avg_LKF=" + disagAvg[2] + "\n"); System.out.print("Err_avg_DLKCF=" + errorAvg[0] + "\n"); System.out.print("Err_avg_DLKF=" + errorAvg[1] + "\n"); System.out.print("Err_avg_LKF=" + errorAvg[2] + "\n"); System.out.println(" End"); } catch (Exception e) { e.printStackTrace(); } }
/** * 测试模型 * * @param filename */ public void test_model(String filename, int testCount) { try { this.test_data_Count = testCount; test_set = loadMatrix(filename, test_data_Count, totalColCount); } catch (Exception e) { e.printStackTrace(); } printInfo("测试数据载入完毕…………"); // 测试数据输入矩阵初始化 横向即每列为一组输入 testP = new DoubleMatrix(NumberofInputNeurons, test_data_Count); // 测试机输出矩阵 横向 testT = new DoubleMatrix(NumberofOutputNeurons, test_data_Count); // 初始化 for (int i = 0; i < test_data_Count; i++) { for (int j = 0; j < totalColCount; j++) { if (j < NumberofInputNeurons) { // 输入部分 testP.put(j, i, test_set.get(i, j)); } else { testT.put(j - NumberofInputNeurons, i, test_set.get(i, j)); } } } // end 初始化 printInfo("测试数据初始化完毕…………"); long start_time_test = System.currentTimeMillis(); // 计算输入权重与阈值部分 DoubleMatrix tmpH = new DoubleMatrix(NumberofHiddenNeurons, test_data_Count); tmpH = InputWeight.mmul(testP); printInfo("权重计算完毕…………"); // 加阈值 // 注意横向问题 for (int i = 0; i < NumberofHiddenNeurons; i++) { for (int j = 0; j < test_data_Count; j++) { tmpH.put(i, j, tmpH.get(i, j) + BiasofHiddenNeurons.get(i, 0)); } } printInfo("阈值计算完毕…………"); // 输出矩阵 DoubleMatrix H = new DoubleMatrix(NumberofHiddenNeurons, test_data_Count); if (func.startsWith("sig")) { for (int i = 0; i < NumberofHiddenNeurons; i++) { for (int j = 0; j < test_data_Count; j++) { double tmp = tmpH.get(i, j); tmp = 1.0f / (1 + Math.exp(-tmp)); H.put(i, j, tmp); } } } else { throw new IllegalArgumentException("不支持的激活函数类型"); } printInfo("激活函数计算完毕…………"); // 将H转置 DoubleMatrix Ht = H.transpose(); // 测试误差 DoubleMatrix Yt = new DoubleMatrix(test_data_Count, NumberofOutputNeurons); Yt = Ht.mmul(OutputWeight); printInfo("测试完毕…………"); long end_time_test = System.currentTimeMillis(); TestingTime = (end_time_test - start_time_test) * 1.0f / 1000; double MSE = 0; printInfo("共有" + NumberofOutputNeurons + "个输出值"); for (int out = 0; out < NumberofOutputNeurons; out++) { printInfo("计算第" + (out + 1) + "个输出值"); double mseTem = 0.0; for (int i = 0; i < test_data_Count; i++) { mseTem += (Yt.get(i, out) - testT.get(out, i)) * (Yt.get(i, out) - testT.get(out, i)); } printInfo( "第" + NumberofOutputNeurons + "个输出值计算完毕,MSE=" + Math.sqrt(mseTem / train_data_Count)); MSE += mseTem; } TestingAccuracy = Math.sqrt(MSE / test_data_Count); printInfo("计算MSE完毕…………"); }